Abstract
The primary structures of two biantennary N -glycans of the glycoprotein Rapana venosa (marine snail) haemocyanin were determined. Two different structural subunits have been found in R. venosa haemocyanin: RvH1 and RvH2. The carbohydrate content of the N-terminal functional unit RvH1-a of RvH1 was studied and compared with the N-terminal functional unit RvH2-a of RvH2. Oligosaccharide fragments were released from the glycoprotein by Smith degradation of a haemocyanin pronase digest and separated on a Superdex 300 column. The glycopeptide fragments, giving a positive reaction for the orcinol/H2SO4 method, were separated by HPLC. In order to determine the linked sugar chains to the hinge glycopeptides isolated from the functional unit RvH1-a, several techniques were applied, including capillary electrophoresis, matrix-assisted laser desorption ionization-MS and electrospray ionization-MS in combination with glycosidase digestion. On the basis of these results and amino acid sequence analysis, we concluded that the functional unit RvH1-a contains 7% oligosaccharides N-glycosidically attached to Asn262 and Asn401, and the following structures were suggested:[structure: see text]
Full Text
The Full Text of this article is available as a PDF (910.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cuff M. E., Miller K. I., van Holde K. E., Hendrickson W. A. Crystal structure of a functional unit from Octopus hemocyanin. J Mol Biol. 1998 May 15;278(4):855–870. doi: 10.1006/jmbi.1998.1647. [DOI] [PubMed] [Google Scholar]
- Dolashka-Angelova P., Beltramini M., Dolashki A., Salvato B., Hristova R., Voelter W. Carbohydrate composition of Carcinus aestuarii hemocyanin. Arch Biochem Biophys. 2001 May 15;389(2):153–158. doi: 10.1006/abbi.2000.2015. [DOI] [PubMed] [Google Scholar]
- Dolashka-Angelova P., Schick M., Stoeva S., Voelter W. Isolation and partial characterization of the N-terminal functional unit of subunit RtH1 from Rapana thomasiana grosse hemocyanin. Int J Biochem Cell Biol. 2000 May;32(5):529–538. doi: 10.1016/s1357-2725(99)00151-x. [DOI] [PubMed] [Google Scholar]
- Dolashka P., Genov N., Parvanova K., Voelter W., Geiger M., Stoeva S. Rapana thomasiana grosse (gastropoda) haemocyanin: spectroscopic studies of the structure in solution and the conformational stability of the native protein and its structural subunits. Biochem J. 1996 Apr 1;315(Pt 1):139–144. doi: 10.1042/bj3150139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANCOIS C., MARSHALL R. D., NEUBERGER A. Carbohydrates in protein. 4. The determination of mannose in hen's-egg albumin by radioisotope dilution. Biochem J. 1962 May;83:335–341. doi: 10.1042/bj0830335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gielens C., De Geest N., Xin X. Q., Devreese B., Van Beeumen J., Préaux G. Evidence for a cysteine-histidine thioether bridge in functional units of molluscan haemocyanins and location of the disulfide bridges in functional units d and g of the betaC-haemocyanin of Helix pomatia. Eur J Biochem. 1997 Sep 15;248(3):879–888. doi: 10.1111/j.1432-1033.1997.00879.x. [DOI] [PubMed] [Google Scholar]
- Hall R. L., Wood E. J., Kamberling J. P., Gerwig G. J., Vliegenthart F. G. 3-O-methyl sugars as constituents of glycoproteins. Identification of 3-O-methylgalactose and 3-O-methylmannose in pulmonate gastropod haemocyanins. Biochem J. 1977 Jul 1;165(1):173–176. doi: 10.1042/bj1650173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris J. R., Markl J. Keyhole limpet hemocyanin: molecular structure of a potent marine immunoactivator. A review. Eur Urol. 2000;37 (Suppl 3):24–33. doi: 10.1159/000052389. [DOI] [PubMed] [Google Scholar]
- Harvey D. J. Identification of cleaved oligosaccharides by matrix-assisted laser desorption/ionization. Methods Mol Biol. 1996;61:243–253. doi: 10.1385/0-89603-345-7:243. [DOI] [PubMed] [Google Scholar]
- Harvey D. J. Matrix-assisted laser desorption/ionisation mass spectrometry of oligosaccharides and glycoconjugates. J Chromatogr A. 1996 Jan 12;720(1-2):429–446. doi: 10.1016/0021-9673(95)00307-x. [DOI] [PubMed] [Google Scholar]
- Herskovits T. T. Recent aspects of the subunit organization and dissociation of hemocyanins. Comp Biochem Physiol B. 1988;91(4):597–611. doi: 10.1016/0305-0491(88)90179-4. [DOI] [PubMed] [Google Scholar]
- Hsi K. L., Chen L., Hawke D. H., Zieske L. R., Yuan P. M. A general approach for characterizing glycosylation sites of glycoproteins. Anal Biochem. 1991 Nov 1;198(2):238–245. doi: 10.1016/0003-2697(91)90419-t. [DOI] [PubMed] [Google Scholar]
- Lang W. H., van Holde K. E. Cloning and sequencing of Octopus dofleini hemocyanin cDNA: derived sequences of functional units Ode and Odf. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):244–248. doi: 10.1073/pnas.88.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lommerse J. P., Thomas-Oates J. E., Gielens C., Préaux G., Kamerling J. P., Vliegenthart J. F. Primary structure of 21 novel monoantennary and diantennary N-linked carbohydrate chains from alphaD-hemocyanin of Helix pomatia. Eur J Biochem. 1997 Oct 1;249(1):195–222. doi: 10.1111/j.1432-1033.1997.00195.x. [DOI] [PubMed] [Google Scholar]
- Markl J., Schmid R., Czichos-Tiedt S., Linzen B. Haemocyanins in spiders, III. Chemical and physical properties of the proteins in Dugesiella and Cupiennius blood. Hoppe Seylers Z Physiol Chem. 1976 Dec;357(12):1713–1725. doi: 10.1515/bchm2.1976.357.2.1713. [DOI] [PubMed] [Google Scholar]
- Neuteboom B., Jekel P. A., Beintema J. J. Primary structure of hemocyanin subunit c from Panulirus interruptus. Eur J Biochem. 1992 May 15;206(1):243–249. doi: 10.1111/j.1432-1033.1992.tb16922.x. [DOI] [PubMed] [Google Scholar]
- Settineri C. A., Burlingame A. L. Structural characterization of protein glycosylation using HPLC/electrospray ionization mass spectrometry and glycosidase digestion. Methods Mol Biol. 1996;61:255–278. doi: 10.1385/0-89603-345-7:255. [DOI] [PubMed] [Google Scholar]
- Stoeva S., Idakieva K., Genov N., Voelter W. Complete amino acid sequence of dioxygen-binding functional unit of the Rapana thomasiana hemocyanin. Biochem Biophys Res Commun. 1997 Sep 18;238(2):403–410. doi: 10.1006/bbrc.1997.7314. [DOI] [PubMed] [Google Scholar]
- Stoeva S., Rachev R., Severov S., Voelter W., Genov N. Carbohydrate content and monosaccharide composition of Rapana thomasiana grosse (Gastropoda) hemocyanin and its structural subunits. Comparison with gastropodan hemocyanins. Comp Biochem Physiol B Biochem Mol Biol. 1995 Apr;110(4):761–765. doi: 10.1016/0305-0491(94)00201-5. [DOI] [PubMed] [Google Scholar]
- Stoeva S., Schütz J., Gebauer W., Hundsdörfer T., Manz C., Markl J., Voelter W. Primary structure and unusual carbohydrate moiety of functional unit 2-c of keyhole limpet hemocyanin (KLH). Biochim Biophys Acta. 1999 Nov 16;1435(1-2):94–109. doi: 10.1016/s0167-4838(99)00198-3. [DOI] [PubMed] [Google Scholar]
- Stoeva Stanka, Idakieva Krasimira, Betzel Christian, Genov Nicolay, Voelter Wolfgang. Amino acid sequence and glycosylation of functional unit RtH2-e from Rapana thomasiana (gastropod) hemocyanin. Arch Biochem Biophys. 2002 Mar 15;399(2):149–158. doi: 10.1006/abbi.2001.2741. [DOI] [PubMed] [Google Scholar]
- Sutton C. W., O'Neill J. A., Cottrell J. S. Site-specific characterization of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal Biochem. 1994 Apr;218(1):34–46. doi: 10.1006/abio.1994.1138. [DOI] [PubMed] [Google Scholar]
- Waxman L. The structure of arthropod and mollusc hemocyanins. J Biol Chem. 1975 May 25;250(10):3796–3806. [PubMed] [Google Scholar]
- van Holde K. E., Miller K. I., Decker H. Hemocyanins and invertebrate evolution. J Biol Chem. 2001 Mar 15;276(19):15563–15566. doi: 10.1074/jbc.R100010200. [DOI] [PubMed] [Google Scholar]
- van Holde K. E., Miller K. I. Hemocyanins. Adv Protein Chem. 1995;47:1–81. doi: 10.1016/s0065-3233(08)60545-8. [DOI] [PubMed] [Google Scholar]