Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):145–155. doi: 10.1042/BJ20021274

Differential signalling by muscarinic receptors in smooth muscle: m2-mediated inactivation of myosin light chain kinase via Gi3, Cdc42/Rac1 and p21-activated kinase 1 pathway, and m3-mediated MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation via Rho-associated kinase/myosin phosphatase targeting subunit 1 and protein kinase C/CPI-17 pathway.

Karnam S Murthy 1, Huiping Zhou 1, John R Grider 1, David L Brautigan 1, Masumi Eto 1, Gabriel M Makhlouf 1
PMCID: PMC1223565  PMID: 12733988

Abstract

Signalling via m3 and m2 receptors in smooth muscles involved activation of two G-protein-dependent pathways by each receptor. m2 receptors were coupled via Gbetagammai3 with activation of phospholipase C-beta3, phosphoinositide 3-kinase and Cdc42/Rac1 (where Cdc stands for cell division cycle) and p21-activated kinase 1 (PAK1), resulting in phosphorylation and inactivation of myosin light chain kinase (MLCK). Each step was inhibited by methoctramine and pertussis toxin. PAK1 activity was abolished in cells expressing both Cdc42-DN (where DN stands for dominant negative) and Rac1-DN. MLCK phosphorylation was inhibited by PAK1 antibody, and in cells expressing Cdc42-DN and Rac1-DN. m3 receptors were coupled via Galpha(q/11) with activation of phospholipase C-beta1 and via RhoA with activation of Rho-associated kinase (Rho kinase), phospholipase D and protein kinase C (PKC). Rho kinase and phospholipase D activities were inhibited by C3 exoenzyme and in cells expressing RhoA-DN. PKC activity was inhibited by bisindolylmaleimide, and in cells expressing RhoA-DN; PKC activity was also inhibited partly by Y27632 (44+/-5%). PKC-induced phosphorylation of PKC-activated 17 kDa inhibitor protein of type 1 phosphatase (CPI-17) at Thr38 was abolished by bisindolylmaleimide and inhibited partly by Y27632 (28+/-3%). Rho-kinase-induced phosphorylation of myosin phosphatase targeting subunit (MYPT1) and was abolished by Y27632. Sustained phosphorylation of 20 kDa regulatory light chain of myosin II (MLC20) and contraction were abolished by bisindolylmaleimide Y27632 and C3 exoenzyme and in cells expressing RhoA-DN. The results suggest that Rho-kinase-dependent phosphorylation of MYPT1 and PKC-dependent phosphorylation and enhancement of CPI-17 binding to the catalytic subunit of MLC phosphatase (MLCP) act co-operatively to inhibit MLCP activity, leading to sustained stimulation of MLC20 phosphorylation and contraction. Because Y27632 inhibited both Rho kinase and PKC activities, it could not be used to ascertain the contribution of MYPT1 to inhibition of MLCP activity. m2-dependent phosphorylation and inactivation of MLCK precluded its involvement in sustained MLC20 phosphorylation and contraction.

Full Text

The Full Text of this article is available as a PDF (371.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bitar K. N., Bradford P. G., Putney J. W., Jr, Makhlouf G. M. Stoichiometry of contraction and Ca2+ mobilization by inositol 1,4,5-trisphosphate in isolated gastric smooth muscle cells. J Biol Chem. 1986 Dec 15;261(35):16591–16596. [PubMed] [Google Scholar]
  2. Deng J. T., Van Lierop J. E., Sutherland C., Walsh M. P. Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase. J Biol Chem. 2001 Feb 8;276(19):16365–16373. doi: 10.1074/jbc.M011634200. [DOI] [PubMed] [Google Scholar]
  3. Deng J. T., Van Lierop J. E., Sutherland C., Walsh M. P. Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase. J Biol Chem. 2001 Feb 8;276(19):16365–16373. doi: 10.1074/jbc.M011634200. [DOI] [PubMed] [Google Scholar]
  4. Eto M., Kitazawa T., Yazawa M., Mukai H., Ono Y., Brautigan D. L. Histamine-induced vasoconstriction involves phosphorylation of a specific inhibitor protein for myosin phosphatase by protein kinase C alpha and delta isoforms. J Biol Chem. 2001 Jun 7;276(31):29072–29078. doi: 10.1074/jbc.M103206200. [DOI] [PubMed] [Google Scholar]
  5. Eto M., Senba S., Morita F., Yazawa M. Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: its specific localization in smooth muscle. FEBS Lett. 1997 Jun 30;410(2-3):356–360. doi: 10.1016/s0014-5793(97)00657-1. [DOI] [PubMed] [Google Scholar]
  6. Exton J. H. Phospholipase D: enzymology, mechanisms of regulation, and function. Physiol Rev. 1997 Apr;77(2):303–320. doi: 10.1152/physrev.1997.77.2.303. [DOI] [PubMed] [Google Scholar]
  7. Fu X., Gong M. C., Jia T., Somlyo A. V., Somlyo A. P. The effects of the Rho-kinase inhibitor Y-27632 on arachidonic acid-, GTPgammaS-, and phorbol ester-induced Ca2+-sensitization of smooth muscle. FEBS Lett. 1998 Nov 27;440(1-2):183–187. doi: 10.1016/s0014-5793(98)01455-0. [DOI] [PubMed] [Google Scholar]
  8. Fujihara H., Walker L. A., Gong M. C., Lemichez E., Boquet P., Somlyo A. V., Somlyo A. P. Inhibition of RhoA translocation and calcium sensitization by in vivo ADP-ribosylation with the chimeric toxin DC3B. Mol Biol Cell. 1997 Dec;8(12):2437–2447. doi: 10.1091/mbc.8.12.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fukata Y., Amano M., Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 2001 Jan;22(1):32–39. doi: 10.1016/s0165-6147(00)01596-0. [DOI] [PubMed] [Google Scholar]
  10. Gong M. C., Fujihara H., Somlyo A. V., Somlyo A. P. Translocation of rhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem. 1997 Apr 18;272(16):10704–10709. doi: 10.1074/jbc.272.16.10704. [DOI] [PubMed] [Google Scholar]
  11. Gong M. C., Iizuka K., Nixon G., Browne J. P., Hall A., Eccleston J. F., Sugai M., Kobayashi S., Somlyo A. V., Somlyo A. P. Role of guanine nucleotide-binding proteins--ras-family or trimeric proteins or both--in Ca2+ sensitization of smooth muscle. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1340–1345. doi: 10.1073/pnas.93.3.1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hart M. J., Jiang X., Kozasa T., Roscoe W., Singer W. D., Gilman A. G., Sternweis P. C., Bollag G. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science. 1998 Jun 26;280(5372):2112–2114. doi: 10.1126/science.280.5372.2112. [DOI] [PubMed] [Google Scholar]
  13. Horowitz A., Clément-Chomienne O., Walsh M. P., Morgan K. G. Epsilon-isoenzyme of protein kinase C induces a Ca(2+)-independent contraction in vascular smooth muscle. Am J Physiol. 1996 Aug;271(2 Pt 1):C589–C594. doi: 10.1152/ajpcell.1996.271.2.C589. [DOI] [PubMed] [Google Scholar]
  14. Horowitz A., Menice C. B., Laporte R., Morgan K. G. Mechanisms of smooth muscle contraction. Physiol Rev. 1996 Oct;76(4):967–1003. doi: 10.1152/physrev.1996.76.4.967. [DOI] [PubMed] [Google Scholar]
  15. Kamm K. E., Stull J. T. Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem. 2000 Nov 28;276(7):4527–4530. doi: 10.1074/jbc.R000028200. [DOI] [PubMed] [Google Scholar]
  16. Kimura K., Ito M., Amano M., Chihara K., Fukata Y., Nakafuku M., Yamamori B., Feng J., Nakano T., Okawa K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase) Science. 1996 Jul 12;273(5272):245–248. doi: 10.1126/science.273.5272.245. [DOI] [PubMed] [Google Scholar]
  17. Kitazawa T., Eto M., Woodsome T. P., Brautigan D. L. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem. 2000 Apr 7;275(14):9897–9900. doi: 10.1074/jbc.275.14.9897. [DOI] [PubMed] [Google Scholar]
  18. Kitazawa T., Masuo M., Somlyo A. P. G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9307–9310. doi: 10.1073/pnas.88.20.9307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koyama M., Ito M., Feng J., Seko T., Shiraki K., Takase K., Hartshorne D. J., Nakano T. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett. 2000 Jun 23;475(3):197–200. doi: 10.1016/s0014-5793(00)01654-9. [DOI] [PubMed] [Google Scholar]
  20. Kubota Y., Nomura M., Kamm K. E., Mumby M. C., Stull J. T. GTP gamma S-dependent regulation of smooth muscle contractile elements. Am J Physiol. 1992 Feb;262(2 Pt 1):C405–C410. doi: 10.1152/ajpcell.1992.262.2.C405. [DOI] [PubMed] [Google Scholar]
  21. Kuemmerle J. F., Murthy K. S. Coupling of the insulin-like growth factor-I receptor tyrosine kinase to Gi2 in human intestinal smooth muscle: Gbetagamma -dependent mitogen-activated protein kinase activation and growth. J Biol Chem. 2000 Dec 18;276(10):7187–7194. doi: 10.1074/jbc.M011145200. [DOI] [PubMed] [Google Scholar]
  22. Lucius C., Arner A., Steusloff A., Troschka M., Hofmann F., Aktories K., Pfitzer G. Clostridium difficile toxin B inhibits carbachol-induced force and myosin light chain phosphorylation in guinea-pig smooth muscle: role of Rho proteins. J Physiol. 1998 Jan 1;506(Pt 1):83–93. doi: 10.1111/j.1469-7793.1998.083bx.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MacDonald J. A., Borman M. A., Murányi A., Somlyo A. V., Hartshorne D. J., Haystead T. A. Identification of the endogenous smooth muscle myosin phosphatase-associated kinase. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2419–2424. doi: 10.1073/pnas.041331498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MacDonald J. A., Eto M., Borman M. A., Brautigan D. L., Haystead T. A. Dual Ser and Thr phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by MYPT-associated kinase. FEBS Lett. 2001 Mar 30;493(2-3):91–94. doi: 10.1016/s0014-5793(01)02277-3. [DOI] [PubMed] [Google Scholar]
  25. Malcolm K. C., Ross A. H., Qiu R. G., Symons M., Exton J. H. Activation of rat liver phospholipase D by the small GTP-binding protein RhoA. J Biol Chem. 1994 Oct 21;269(42):25951–25954. [PubMed] [Google Scholar]
  26. Masuo M., Reardon S., Ikebe M., Kitazawa T. A novel mechanism for the Ca(2+)-sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase. J Gen Physiol. 1994 Aug;104(2):265–286. doi: 10.1085/jgp.104.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miyazaki Koji, Yano Takeo, Schmidt David J., Tokui Toshiya, Shibata Masao, Lifshitz Lawrence M., Kimura Satoshi, Tuft Richard A., Ikebe Mitsuo. Rho-dependent agonist-induced spatio-temporal change in myosin phosphorylation in smooth muscle cells. J Biol Chem. 2001 Oct 22;277(1):725–734. doi: 10.1074/jbc.M108568200. [DOI] [PubMed] [Google Scholar]
  28. Murthy K. S., Coy D. H., Makhlouf G. M. Somatostatin receptor-mediated signaling in smooth muscle. Activation of phospholipase C-beta3 by Gbetagamma and inhibition of adenylyl cyclase by Galphai1 and Galphao. J Biol Chem. 1996 Sep 20;271(38):23458–23463. doi: 10.1074/jbc.271.38.23458. [DOI] [PubMed] [Google Scholar]
  29. Murthy K. S., Grider J. R., Kuemmerle J. F., Makhlouf G. M. Sustained muscle contraction induced by agonists, growth factors, and Ca(2+) mediated by distinct PKC isozymes. Am J Physiol Gastrointest Liver Physiol. 2000 Jul;279(1):G201–G210. doi: 10.1152/ajpgi.2000.279.1.G201. [DOI] [PubMed] [Google Scholar]
  30. Murthy K. S., Makhlouf G. M. Adenosine A1 receptor-mediated activation of phospholipase C-beta 3 in intestinal muscle: dual requirement for alpha and beta gamma subunits of Gi3. Mol Pharmacol. 1995 Jun;47(6):1172–1179. [PubMed] [Google Scholar]
  31. Murthy K. S., Makhlouf G. M. Agonist-mediated activation of phosphatidylcholine-specific phospholipase C and D in intestinal smooth muscle. Mol Pharmacol. 1995 Aug;48(2):293–304. [PubMed] [Google Scholar]
  32. Murthy K. S., Makhlouf G. M. Coexpression of ligand-gated P2X and G protein-coupled P2Y receptors in smooth muscle. Preferential activation of P2Y receptors coupled to phospholipase C (PLC)-beta1 via Galphaq/11 and to PLC-beta3 via Gbetagammai3. J Biol Chem. 1998 Feb 20;273(8):4695–4704. doi: 10.1074/jbc.273.8.4695. [DOI] [PubMed] [Google Scholar]
  33. Murthy K. S., Makhlouf G. M. Differential coupling of muscarinic m2 and m3 receptors to adenylyl cyclases V/VI in smooth muscle. Concurrent M2-mediated inhibition via Galphai3 and m3-mediated stimulation via Gbetagammaq. J Biol Chem. 1997 Aug 22;272(34):21317–21324. doi: 10.1074/jbc.272.34.21317. [DOI] [PubMed] [Google Scholar]
  34. Murthy K. S., Makhlouf G. M. Opioid mu, delta, and kappa receptor-induced activation of phospholipase C-beta 3 and inhibition of adenylyl cyclase is mediated by Gi2 and G(o) in smooth muscle. Mol Pharmacol. 1996 Oct;50(4):870–877. [PubMed] [Google Scholar]
  35. Murthy K. S., Makhlouf G. M. Phosphoinositide metabolism in intestinal smooth muscle: preferential production of Ins(1,4,5)P3 in circular muscle cells. Am J Physiol. 1991 Dec;261(6 Pt 1):G945–G951. doi: 10.1152/ajpgi.1991.261.6.G945. [DOI] [PubMed] [Google Scholar]
  36. Niiro N., Ikebe M. Zipper-interacting protein kinase induces Ca(2+)-free smooth muscle contraction via myosin light chain phosphorylation. J Biol Chem. 2001 May 30;276(31):29567–29574. doi: 10.1074/jbc.M102753200. [DOI] [PubMed] [Google Scholar]
  37. Royal I., Lamarche-Vane N., Lamorte L., Kaibuchi K., Park M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell. 2000 May;11(5):1709–1725. doi: 10.1091/mbc.11.5.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanders L. C., Matsumura F., Bokoch G. M., de Lanerolle P. Inhibition of myosin light chain kinase by p21-activated kinase. Science. 1999 Mar 26;283(5410):2083–2085. doi: 10.1126/science.283.5410.2083. [DOI] [PubMed] [Google Scholar]
  39. Senba S., Eto M., Yazawa M. Identification of trimeric myosin phosphatase (PP1M) as a target for a novel PKC-potentiated protein phosphatase-1 inhibitory protein (CPI17) in porcine aorta smooth muscle. J Biochem. 1999 Feb;125(2):354–362. doi: 10.1093/oxfordjournals.jbchem.a022294. [DOI] [PubMed] [Google Scholar]
  40. Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
  41. Somlyo A. P., Somlyo A. V. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol. 2000 Jan 15;522(Pt 2):177–185. doi: 10.1111/j.1469-7793.2000.t01-2-00177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Swärd K., Dreja K., Susnjar M., Hellstrand P., Hartshorne D. J., Walsh M. P. Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum. J Physiol. 2000 Jan 1;522(Pt 1):33–49. doi: 10.1111/j.1469-7793.2000.0033m.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tansey M. G., Luby-Phelps K., Kamm K. E., Stull J. T. Ca(2+)-dependent phosphorylation of myosin light chain kinase decreases the Ca2+ sensitivity of light chain phosphorylation within smooth muscle cells. J Biol Chem. 1994 Apr 1;269(13):9912–9920. [PubMed] [Google Scholar]
  44. Uehata M., Ishizaki T., Satoh H., Ono T., Kawahara T., Morishita T., Tamakawa H., Yamagami K., Inui J., Maekawa M. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997 Oct 30;389(6654):990–994. doi: 10.1038/40187. [DOI] [PubMed] [Google Scholar]
  45. Walsh M. P., Andrea J. E., Allen B. G., Clément-Chomienne O., Collins E. M., Morgan K. G. Smooth muscle protein kinase C. Can J Physiol Pharmacol. 1994 Nov;72(11):1392–1399. doi: 10.1139/y94-201. [DOI] [PubMed] [Google Scholar]
  46. Wang Y. X., Dhulipala P. D., Li L., Benovic J. L., Kotlikoff M. I. Coupling of M2 muscarinic receptors to membrane ion channels via phosphoinositide 3-kinase gamma and atypical protein kinase C. J Biol Chem. 1999 May 14;274(20):13859–13864. doi: 10.1074/jbc.274.20.13859. [DOI] [PubMed] [Google Scholar]
  47. Weber L. P., Seto M., Sasaki Y., Swärd K., Walsh M. P. The involvement of protein kinase C in myosin phosphorylation and force development in rat tail arterial smooth muscle. Biochem J. 2000 Dec 1;352(Pt 2):573–582. [PMC free article] [PubMed] [Google Scholar]
  48. Weber L. P., Van Lierop J. E., Walsh M. P. Ca2+-independent phosphorylation of myosin in rat caudal artery and chicken gizzard myofilaments. J Physiol. 1999 May 1;516(Pt 3):805–824. doi: 10.1111/j.1469-7793.1999.0805u.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Woodsome T. P., Eto M., Everett A., Brautigan D. L., Kitazawa T. Expression of CPI-17 and myosin phosphatase correlates with Ca(2+) sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol. 2001 Sep 1;535(Pt 2):553–564. doi: 10.1111/j.1469-7793.2001.t01-1-00553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yamawaki K., Ito M., Machida H., Moriki N., Okamoto R., Isaka N., Shimpo H., Kohda A., Okumura K., Hartshorne D. J. Identification of human CPI-17, an inhibitory phosphoprotein for myosin phosphatase. Biochem Biophys Res Commun. 2001 Jul 27;285(4):1040–1045. doi: 10.1006/bbrc.2001.5290. [DOI] [PubMed] [Google Scholar]
  51. Zhou Huiping, Das Sankar, Murthy Karnam S. Erk1/2- and p38 MAP kinase-dependent phosphorylation and activation of cPLA2 by m3 and m2 receptors. Am J Physiol Gastrointest Liver Physiol. 2003 Mar;284(3):G472–G480. doi: 10.1152/ajpgi.00345.2002. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES