Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):71–78. doi: 10.1042/BJ20030488

Comparative membrane interaction study of viscotoxins A3, A2 and B from mistletoe (Viscum album) and connections with their structures.

Alexandre Coulon 1, Amor Mosbah 1, André Lopez 1, Anne-Marie Sautereau 1, Gerhard Schaller 1, Konrad Urech 1, Pierre Rougé 1, Hervé Darbon 1
PMCID: PMC1223566  PMID: 12733989

Abstract

Viscotoxins A2 (VA2) and B (VB) are, together with viscotoxin A3 (VA3), among the most abundant viscotoxin isoforms that occur in mistletoe-derived medicines used in anti-cancer therapy. Although these isoforms have a high degree of amino-acid-sequence similarity, they are strikingly different from each other in their in vitro cytotoxic potency towards tumour cells. First, as VA3 is the only viscotoxin whose three-dimensional (3D) structure has been solved to date, we report the NMR determination of the 3D structures of VA2 and VB. Secondly, to account for the in vitro cytotoxicity discrepancy, we carried out a comparative study of the interaction of the three viscotoxins with model membranes. Although the overall 3D structure is highly conserved among the three isoforms, some discrete structural features and associated surface properties readily account for the different affinity and perturbation of model membranes. VA3 and VA2 interact in a similar way, but the weaker hydrophobic character of VA2 is thought to be mainly responsible for the apparent different affinity towards membranes. VB is much less active than the other two viscotoxins and does not insert into model membranes. This could be related to the occurrence of a single residue (Arg25) protruding outside the hydrophobic plane formed by the two amphipathic alpha-helices, through which viscotoxins are supposed to interact with plasma membranes.

Full Text

The Full Text of this article is available as a PDF (247.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  2. Büssing A., Stein G. M., Wagner M., Wagner B., Schaller G., Pfüller U., Schietzel M. Accidental cell death and generation of reactive oxygen intermediates in human lymphocytes induced by thionins from Viscum album L. Eur J Biochem. 1999 May;262(1):79–87. doi: 10.1046/j.1432-1327.1999.00356.x. [DOI] [PubMed] [Google Scholar]
  3. Büssing A., Vervecken W., Wagner M., Wagner B., Pfüller U., Schietzel M. Expression of mitochondrial Apo2.7 molecules and caspase-3 activation in human lymphocytes treated with the ribosome-inhibiting mistletoe lectins and the cell membrane permeabilizing viscotoxins. Cytometry. 1999 Oct 1;37(2):133–139. [PubMed] [Google Scholar]
  4. Caaveiro J. M., Molina A., González-Mañas J. M., Rodríguez-Palenzuela P., Garcia-Olmedo F., Goñi F. M. Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Lett. 1997 Jun 30;410(2-3):338–342. doi: 10.1016/s0014-5793(97)00613-3. [DOI] [PubMed] [Google Scholar]
  5. Connor J., Bucana C., Fidler I. J., Schroit A. J. Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer-leaflet lipid by prothrombinase complex formation. Proc Natl Acad Sci U S A. 1989 May;86(9):3184–3188. doi: 10.1073/pnas.86.9.3184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coulon Alexandre, Berkane Emir, Sautereau Anne Marie, Urech Konrad, Rouge Pierre, Lopez Andre. Modes of membrane interaction of a natural cysteine-rich peptide: viscotoxin A3. Biochim Biophys Acta. 2002 Feb 15;1559(2):145–159. doi: 10.1016/s0005-2736(01)00446-1. [DOI] [PubMed] [Google Scholar]
  7. Evans J., Wang Y. D., Shaw K. P., Vernon L. P. Cellular responses to Pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosine iodination. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5849–5853. doi: 10.1073/pnas.86.15.5849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Florack D. E., Stiekema W. J. Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol. 1994 Oct;26(1):25–37. doi: 10.1007/BF00039517. [DOI] [PubMed] [Google Scholar]
  9. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  10. Güntert P., Wüthrich K. Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J Biomol NMR. 1991 Nov;1(4):447–456. doi: 10.1007/BF02192866. [DOI] [PubMed] [Google Scholar]
  11. Hughes P., Dennis E., Whitecross M., Llewellyn D., Gage P. The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes. J Biol Chem. 2000 Jan 14;275(2):823–827. doi: 10.1074/jbc.275.2.823. [DOI] [PubMed] [Google Scholar]
  12. Jung M. L., Baudino S., Ribéreau-Gayon G., Beck J. P. Characterization of cytotoxic proteins from mistletoe (Viscum album L.). Cancer Lett. 1990 May 30;51(2):103–108. doi: 10.1016/0304-3835(90)90044-x. [DOI] [PubMed] [Google Scholar]
  13. Killian J. A., von Heijne G. How proteins adapt to a membrane-water interface. Trends Biochem Sci. 2000 Sep;25(9):429–434. doi: 10.1016/s0968-0004(00)01626-1. [DOI] [PubMed] [Google Scholar]
  14. Konopa J., Woynarowski J. M., Lewandowska-Gumieniak M. Isolation of viscotoxins. Cytotoxic basic polypeptides from Viscum album L. Hoppe Seylers Z Physiol Chem. 1980 Oct;361(10):1525–1533. doi: 10.1515/bchm2.1980.361.2.1525. [DOI] [PubMed] [Google Scholar]
  15. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  16. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  17. McClare C. W. An accurate and convenient organic phosphorus assay. Anal Biochem. 1971 Feb;39(2):527–530. doi: 10.1016/0003-2697(71)90443-x. [DOI] [PubMed] [Google Scholar]
  18. Osorio e Castro V. R., Vernon L. P. Hemolytic activity of thionin from Pyrularia pubera nuts and snake venom toxins of Naja naja species: Pyrularia thionin and snake venom cardiotoxin compete for the same membrane site. Toxicon. 1989;27(5):511–517. doi: 10.1016/0041-0101(89)90112-8. [DOI] [PubMed] [Google Scholar]
  19. Romagnoli S., Ugolini R., Fogolari F., Schaller G., Urech K., Giannattasio M., Ragona L., Molinari H. NMR structural determination of viscotoxin A3 from Viscum album L. Biochem J. 2000 Sep 1;350(Pt 2):569–577. [PMC free article] [PubMed] [Google Scholar]
  20. Schaller G., Urech K., Grazi G., Giannattasio M. Viscotoxin composition of the three European subspecies of Viscum album. Planta Med. 1998 Oct;64(7):677–678. doi: 10.1055/s-2006-957553. [DOI] [PubMed] [Google Scholar]
  21. Schindler H. Exchange and interactions between lipid layers at the surface of a liposome solution. Biochim Biophys Acta. 1979 Aug 7;555(2):316–336. doi: 10.1016/0005-2736(79)90171-8. [DOI] [PubMed] [Google Scholar]
  22. Seelig A. Local anesthetics and pressure: a comparison of dibucaine binding to lipid monolayers and bilayers. Biochim Biophys Acta. 1987 May 29;899(2):196–204. doi: 10.1016/0005-2736(87)90400-7. [DOI] [PubMed] [Google Scholar]
  23. Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
  24. Teeter M. M., Ma X. Q., Rao U., Whitlow M. Crystal structure of a protein-toxin alpha 1-purothionin at 2.5A and a comparison with predicted models. Proteins. 1990;8(2):118–132. doi: 10.1002/prot.340080203. [DOI] [PubMed] [Google Scholar]
  25. Thevissen K., Ghazi A., De Samblanx G. W., Brownlee C., Osborn R. W., Broekaert W. F. Fungal membrane responses induced by plant defensins and thionins. J Biol Chem. 1996 Jun 21;271(25):15018–15025. doi: 10.1074/jbc.271.25.15018. [DOI] [PubMed] [Google Scholar]
  26. Utsugi T., Schroit A. J., Connor J., Bucana C. D., Fidler I. J. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 1991 Jun 1;51(11):3062–3066. [PubMed] [Google Scholar]
  27. Wilson H. A., Huang W., Waldrip J. B., Judd A. M., Vernon L. P., Bell J. D. Mechanisms by which thionin induces susceptibility of S49 cell membranes to extracellular phospholipase A2. Biochim Biophys Acta. 1997 Nov 15;1349(2):142–156. doi: 10.1016/s0005-2760(97)00089-1. [DOI] [PubMed] [Google Scholar]
  28. de Planque M. R., Kruijtzer J. A., Liskamp R. M., Marsh D., Greathouse D. V., Koeppe R. E., 2nd, de Kruijff B., Killian J. A. Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. J Biol Chem. 1999 Jul 23;274(30):20839–20846. doi: 10.1074/jbc.274.30.20839. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES