Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):131–136. doi: 10.1042/BJ20030222

Decreased mitochondrial tRNALys steady-state levels and aminoacylation are associated with the pathogenic G8313A mitochondrial DNA mutation.

Sandra R Bacman 1, David P Atencio 1, Carlos T Moraes 1
PMCID: PMC1223569  PMID: 12737626

Abstract

Mutations in human mitochondrial tRNA genes cause a number of multisystemic disorders. A G-to-A transition at position 8313 (G8313A) transition in the mitochondrial tRNALys gene has been associated with a childhood syndrome characterized by gastrointestinal-system involvement and encephaloneuropathy. We have used transmitochondrial cybrid clones harbouring patient-derived mitochondrial DNA with the G8313A mutation for the study of the molecular pathogenesis. Our results showed that mutant mitochondrial cybrids respired poorly, and had severely defective mitochondrial protein synthesis and respiratory-chain-enzyme activity. Mutant cybrids also showed a marked decrease in tRNALys steady-state levels and aminoacylation, suggesting that these molecular abnormalities may underlie the pathogenesis of the mitochondrial G8313A mutation.

Full Text

The Full Text of this article is available as a PDF (194.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol. 1996;53:79–129. doi: 10.1016/s0079-6603(08)60143-9. [DOI] [PubMed] [Google Scholar]
  2. Akita Y., Koga Y., Iwanaga R., Wada N., Tsubone J., Fukuda S., Nakamura Y., Kato H. Fatal hypertrophic cardiomyopathy associated with an A8296G mutation in the mitochondrial tRNA(Lys) gene. Hum Mutat. 2000 Apr;15(4):382–382. doi: 10.1002/(SICI)1098-1004(200004)15:4<382::AID-HUMU15>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  3. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  4. Barrientos A., Kenyon L., Moraes C. T. Human xenomitochondrial cybrids. Cellular models of mitochondrial complex I deficiency. J Biol Chem. 1998 Jun 5;273(23):14210–14217. doi: 10.1074/jbc.273.23.14210. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Börner G. V., Zeviani M., Tiranti V., Carrara F., Hoffmann S., Gerbitz K. D., Lochmüller H., Pongratz D., Klopstock T., Melberg A. Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients. Hum Mol Genet. 2000 Mar 1;9(4):467–475. doi: 10.1093/hmg/9.4.467. [DOI] [PubMed] [Google Scholar]
  7. Chomyn A., Enriquez J. A., Micol V., Fernandez-Silva P., Attardi G. The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu(UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem. 2000 Jun 23;275(25):19198–19209. doi: 10.1074/jbc.M908734199. [DOI] [PubMed] [Google Scholar]
  8. Chomyn A. In vivo labeling and analysis of human mitochondrial translation products. Methods Enzymol. 1996;264:197–211. doi: 10.1016/s0076-6879(96)64020-8. [DOI] [PubMed] [Google Scholar]
  9. Chomyn A. The myoclonic epilepsy and ragged-red fiber mutation provides new insights into human mitochondrial function and genetics. Am J Hum Genet. 1998 Apr;62(4):745–751. doi: 10.1086/301813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Enriquez J. A., Chomyn A., Attardi G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet. 1995 May;10(1):47–55. doi: 10.1038/ng0595-47. [DOI] [PubMed] [Google Scholar]
  11. Freist W. Mechanisms of aminoacyl-tRNA synthetases: a critical consideration of recent results. Biochemistry. 1989 Aug 22;28(17):6787–6795. doi: 10.1021/bi00443a001. [DOI] [PubMed] [Google Scholar]
  12. Hao H., Moraes C. T. A disease-associated G5703A mutation in human mitochondrial DNA causes a conformational change and a marked decrease in steady-state levels of mitochondrial tRNA(Asn). Mol Cell Biol. 1997 Dec;17(12):6831–6837. doi: 10.1128/mcb.17.12.6831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hao H., Moraes C. T. Functional and molecular mitochondrial abnormalities associated with a C --> T transition at position 3256 of the human mitochondrial genome. The effects of a pathogenic mitochondrial tRNA point mutation in organelle translation and RNA processing. J Biol Chem. 1996 Jan 26;271(4):2347–2352. doi: 10.1074/jbc.271.4.2347. [DOI] [PubMed] [Google Scholar]
  14. Helm M., Florentz C., Chomyn A., Attardi G. Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR). Nucleic Acids Res. 1999 Feb 1;27(3):756–763. doi: 10.1093/nar/27.3.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Houshmand M., Lindberg C., Moslemi A. R., Oldfors A., Holme E. A novel heteroplasmic point mutation in the mitochondrial tRNA(Lys) gene in a sporadic case of mitochondrial encephalomyopathy: de novo mutation and no transmission to the offspring. Hum Mutat. 1999;13(3):203–209. doi: 10.1002/(SICI)1098-1004(1999)13:3<203::AID-HUMU4>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  16. Kameoka K., Isotani H., Tanaka K., Azukari K., Fujimura Y., Shiota Y., Sasaki E., Majima M., Furukawa K., Haginomori S. Novel mitochondrial DNA mutation in tRNA(Lys) (8296A-->G) associated with diabetes. Biochem Biophys Res Commun. 1998 Apr 17;245(2):523–527. doi: 10.1006/bbrc.1998.8437. [DOI] [PubMed] [Google Scholar]
  17. King M. P., Attadi G. Mitochondria-mediated transformation of human rho(0) cells. Methods Enzymol. 1996;264:313–334. doi: 10.1016/s0076-6879(96)64030-0. [DOI] [PubMed] [Google Scholar]
  18. King M. P., Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989 Oct 27;246(4929):500–503. doi: 10.1126/science.2814477. [DOI] [PubMed] [Google Scholar]
  19. Masucci J. P., Schon E. A., King M. P. Point mutations in the mitochondrial tRNA(Lys) gene: implications for pathogenesis and mechanism. Mol Cell Biochem. 1997 Sep;174(1-2):215–219. [PubMed] [Google Scholar]
  20. Moraes C. T., Dey R., Barrientos A. Transmitochondrial technology in animal cells. Methods Cell Biol. 2001;65:397–412. doi: 10.1016/s0091-679x(01)65023-4. [DOI] [PubMed] [Google Scholar]
  21. Moraes C. T., Ricci E., Bonilla E., DiMauro S., Schon E. A. The mitochondrial tRNA(Leu(UUR)) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet. 1992 May;50(5):934–949. [PMC free article] [PubMed] [Google Scholar]
  22. Ozawa M., Nishino I., Horai S., Nonaka I., Goto Y. I. Myoclonus epilepsy associated with ragged-red fibers: a G-to-A mutation at nucleotide pair 8363 in mitochondrial tRNA(Lys) in two families. Muscle Nerve. 1997 Mar;20(3):271–278. doi: 10.1002/(SICI)1097-4598(199703)20:3<271::AID-MUS2>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  23. Servidei Serenella. Mitochondrial encephalomyopathies:gene mutation. Neuromuscul Disord. 2002 Jun;12(5):524–529. doi: 10.1016/s0960-8966(02)00056-1. [DOI] [PubMed] [Google Scholar]
  24. Shoffner J. M., Lott M. T., Lezza A. M., Seibel P., Ballinger S. W., Wallace D. C. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990 Jun 15;61(6):931–937. doi: 10.1016/0092-8674(90)90059-n. [DOI] [PubMed] [Google Scholar]
  25. Shtilbans A., Shanske S., Goodman S., Sue C. M., Bruno C., Johnson T. L., Lava N. S., Waheed N., DiMauro S. G8363A mutation in the mitochondrial DNA transfer ribonucleic acidLys gene: another cause of Leigh syndrome. J Child Neurol. 2000 Nov;15(11):759–761. doi: 10.1177/088307380001501109. [DOI] [PubMed] [Google Scholar]
  26. Silvestri G., Moraes C. T., Shanske S., Oh S. J., DiMauro S. A new mtDNA mutation in the tRNA(Lys) gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet. 1992 Dec;51(6):1213–1217. [PMC free article] [PubMed] [Google Scholar]
  27. Trounce I. A., Kim Y. L., Jun A. S., Wallace D. C. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 1996;264:484–509. doi: 10.1016/s0076-6879(96)64044-0. [DOI] [PubMed] [Google Scholar]
  28. Verma A., Piccoli D. A., Bonilla E., Berry G. T., DiMauro S., Moraes C. T. A novel mitochondrial G8313A mutation associated with prominent initial gastrointestinal symptoms and progressive encephaloneuropathy. Pediatr Res. 1997 Oct;42(4):448–454. doi: 10.1203/00006450-199710000-00005. [DOI] [PubMed] [Google Scholar]
  29. Yasukawa T., Hino N., Suzuki T., Watanabe K., Ueda T., Ohta S. A pathogenic point mutation reduces stability of mitochondrial mutant tRNA(Ile). Nucleic Acids Res. 2000 Oct 1;28(19):3779–3784. doi: 10.1093/nar/28.19.3779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yasukawa T., Suzuki T., Ishii N., Ohta S., Watanabe K. Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J. 2001 Sep 3;20(17):4794–4802. doi: 10.1093/emboj/20.17.4794. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES