Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):41–49. doi: 10.1042/BJ20021963

The three isoenzymes of human inositol-1,4,5-trisphosphate 3-kinase show specific intracellular localization but comparable Ca2+ responses on transfection in COS-7 cells.

Valérie Dewaste 1, Colette Moreau 1, Florence De Smedt 1, Françoise Bex 1, Humbert De Smedt 1, Frank Wuytack 1, Ludwig Missiaen 1, Christophe Erneux 1
PMCID: PMC1223573  PMID: 12747803

Abstract

Inositol 1,4,5-trisphosphate [Ins(1,4,5) P3] 3-kinase catalyses the phosphorylation of InsP3 to inositol 1,3,4,5-tetrakisphosphate. cDNAs encoding three human isoenzymes of InsP3 3-kinase (A, B and C) have been reported previously [Choi, Kim, Lee, Moon, Sim, Kim, Chung and Rhee (1990) Science 248, 64-66; Dewaste, Pouillon, Moreau, Shears, Takazawa and Erneux (2000) Biochem. J. 352, 343-351; Dewaste, Roymans, Moreau and Erneux (2002) Biochem. Biophys. Res. Commun. 291, 400-405; Takazawa, Perret, Dumont and Erneux (1991) Biochem. Biophys. Res. Commun. 174, 529-535]. The localization of InsP3 3-kinase isoenzymes fused at their N-terminus to the green fluorescent protein has been studied by confocal microscopy. The A isoform appeared to associate with the cytoskeleton, whereas the C isoform was totally cytoplasmic. The B isoform had a more complex localization: it appeared in the plasma membrane, cytoskeleton and in the endoplasmic reticulum. The three human isoenzymes of InsP3 3-kinase can thus be distinguished by their N-terminal sequence, sensitivity to Ca2+/calmodulin and localization on transfection in COS-7 cells. We have compared the cytosolic Ca2+ responses induced by ATP in COS-7 cells transfected with the three isoenzymes. Cells expressing high levels of any of the three isoforms no longer respond to ATP, whereas cells expressing low levels of each enzyme showed a reduced response consisting of one to three Ca2+ spikes in response to 100 microM ATP. These effects were seen only in wild-type InsP3 3-kinase-transfected cells. 3-Kinase-dead mutant cells behaved as vector-transfected cells. The results highlight the potential role of the three isoforms of InsP3 3-kinase as direct InsP3 metabolizing enzymes and direct regulators of Ca2+ responses to extracellular signals.

Full Text

The Full Text of this article is available as a PDF (348.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  2. Changya L., Gallacher D. V., Irvine R. F., Potter B. V., Petersen O. H. Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells. J Membr Biol. 1989 Jul;109(1):85–93. doi: 10.1007/BF01870793. [DOI] [PubMed] [Google Scholar]
  3. Choi K. Y., Kim H. K., Lee S. Y., Moon K. H., Sim S. S., Kim J. W., Chung H. K., Rhee S. G. Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Science. 1990 Apr 6;248(4951):64–66. doi: 10.1126/science.2157285. [DOI] [PubMed] [Google Scholar]
  4. Cozier G. E., Lockyer P. J., Reynolds J. S., Kupzig S., Bottomley J. R., Millard T. H., Banting G., Cullen P. J. GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J Biol Chem. 2000 Sep 8;275(36):28261–28268. doi: 10.1074/jbc.M000469200. [DOI] [PubMed] [Google Scholar]
  5. Cullen P. J., Hsuan J. J., Truong O., Letcher A. J., Jackson T. R., Dawson A. P., Irvine R. F. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature. 1995 Aug 10;376(6540):527–530. doi: 10.1038/376527a0. [DOI] [PubMed] [Google Scholar]
  6. Cullen P. J., Loomis-Husselbee J., Dawson A. P., Irvine R. F. Inositol 1,3,4,5-tetrakisphosphate and Ca2+ homoeostasis: the role of GAP1IP4BP. Biochem Soc Trans. 1997 Aug;25(3):991–996. doi: 10.1042/bst0250991. [DOI] [PubMed] [Google Scholar]
  7. De Smedt F., Boom A., Pesesse X., Schiffmann S. N., Erneux C. Post-translational modification of human brain type I inositol-1,4,5-trisphosphate 5-phosphatase by farnesylation. J Biol Chem. 1996 Apr 26;271(17):10419–10424. doi: 10.1074/jbc.271.17.10419. [DOI] [PubMed] [Google Scholar]
  8. De Smedt F., Missiaen L., Parys J. B., Vanweyenberg V., De Smedt H., Erneux C. Isoprenylated human brain type I inositol 1,4,5-trisphosphate 5-phosphatase controls Ca2+ oscillations induced by ATP in Chinese hamster ovary cells. J Biol Chem. 1997 Jul 11;272(28):17367–17375. doi: 10.1074/jbc.272.28.17367. [DOI] [PubMed] [Google Scholar]
  9. Dewaste V., Pouillon V., Moreau C., Shears S., Takazawa K., Erneux C. Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C. Biochem J. 2000 Dec 1;352(Pt 2):343–351. [PMC free article] [PubMed] [Google Scholar]
  10. Dewaste Valérie, Roymans Dirk, Moreau Colette, Erneux Christophe. Cloning and expression of a full-length cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase B. Biochem Biophys Res Commun. 2002 Feb 22;291(2):400–405. doi: 10.1006/bbrc.2002.6456. [DOI] [PubMed] [Google Scholar]
  11. Dupont G., Erneux C. Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell Calcium. 1997 Nov;22(5):321–331. doi: 10.1016/s0143-4160(97)90017-8. [DOI] [PubMed] [Google Scholar]
  12. Erneux C., Govaerts C., Communi D., Pesesse X. The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):185–199. doi: 10.1016/s0005-2760(98)00132-5. [DOI] [PubMed] [Google Scholar]
  13. Goldbeter A., Dupont G., Berridge M. J. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1461–1465. doi: 10.1073/pnas.87.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harmer Alexander R., Gallacher David V., Smith Peter M. Correlations between the functional integrity of the endoplasmic reticulum and polarized Ca2+ signalling in mouse lacrimal acinar cells: a role for inositol 1,3,4,5-tetrakisphosphate. Biochem J. 2002 Oct 1;367(Pt 1):137–143. doi: 10.1042/BJ20020305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hermosura M. C., Takeuchi H., Fleig A., Riley A. M., Potter B. V., Hirata M., Penner R. InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature. 2000 Dec 7;408(6813):735–740. doi: 10.1038/35047115. [DOI] [PubMed] [Google Scholar]
  16. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
  17. Irvine R. F. Is inositol tetrakisphosphate the second messenger that controls Ca2+ entry into cells? Adv Second Messenger Phosphoprotein Res. 1992;26:161–185. [PubMed] [Google Scholar]
  18. Irvine R. F., Letcher A. J., Heslop J. P., Berridge M. J. The inositol tris/tetrakisphosphate pathway--demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature. 1986 Apr 17;320(6063):631–634. doi: 10.1038/320631a0. [DOI] [PubMed] [Google Scholar]
  19. Irvine R. F., Schell M. J. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol. 2001 May;2(5):327–338. doi: 10.1038/35073015. [DOI] [PubMed] [Google Scholar]
  20. Khan A. A., Steiner J. P., Klein M. G., Schneider M. F., Snyder S. H. IP3 receptor: localization to plasma membrane of T cells and cocapping with the T cell receptor. Science. 1992 Aug 7;257(5071):815–818. doi: 10.1126/science.1323146. [DOI] [PubMed] [Google Scholar]
  21. Khan A. A., Steiner J. P., Snyder S. H. Plasma membrane inositol 1,4,5-trisphosphate receptor of lymphocytes: selective enrichment in sialic acid and unique binding specificity. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2849–2853. doi: 10.1073/pnas.89.7.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lin A. N., Barnes S., Wallace R. W. Phosphorylation by protein kinase C inactivates an inositol 1,4,5-trisphosphate 3-kinase purified from human platelets. Biochem Biophys Res Commun. 1990 Aug 16;170(3):1371–1376. doi: 10.1016/0006-291x(90)90546-y. [DOI] [PubMed] [Google Scholar]
  23. Majerus P. W., Kisseleva M. V., Norris F. A. The role of phosphatases in inositol signaling reactions. J Biol Chem. 1999 Apr 16;274(16):10669–10672. doi: 10.1074/jbc.274.16.10669. [DOI] [PubMed] [Google Scholar]
  24. Meyer T., Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem. 1991;20:153–174. doi: 10.1146/annurev.bb.20.060191.001101. [DOI] [PubMed] [Google Scholar]
  25. Mikoshiba K., Furuichi T., Miyawaki A., Yoshikawa S., Nakade S., Michikawa T., Nakagawa T., Okano H., Kume S., Muto A. Structure and function of inositol 1,4,5-trisphosphate receptor. Ann N Y Acad Sci. 1993 Dec 20;707:178–197. doi: 10.1111/j.1749-6632.1993.tb38052.x. [DOI] [PubMed] [Google Scholar]
  26. Millard T. H., Cullen P. J., Banting G. Effects of elevated expression of inositol 1,4,5-trisphosphate 3-kinase B on Ca2+ homoeostasis in HeLa cells. Biochem J. 2000 Dec 15;352(Pt 3):709–715. [PMC free article] [PubMed] [Google Scholar]
  27. Mitchell Christina A., Gurung Rajendra, Kong Anne M., Dyson Jennifer M., Tan April, Ooms Lisa M. Inositol polyphosphate 5-phosphatases: lipid phosphatases with flair. IUBMB Life. 2002 Jan;53(1):25–36. doi: 10.1080/15216540210815. [DOI] [PubMed] [Google Scholar]
  28. Nalaskowski Marcus M., Bertsch Uwe, Fanick Werner, Stockebrand Malte C., Schmale Hartwig, Mayr Georg W. Rat inositol 1,4,5-trisphosphate 3-kinase C is enzymatically specialized for basal cellular inositol trisphosphate phosphorylation and shuttles actively between nucleus and cytoplasm. J Biol Chem. 2003 Mar 20;278(22):19765–19776. doi: 10.1074/jbc.M211059200. [DOI] [PubMed] [Google Scholar]
  29. Nash Mark S., Schell Michael J., Atkinson Peter J., Johnston Neil R., Nahorski Stefan R., Challiss R. A. John. Determinants of metabotropic glutamate receptor-5-mediated Ca2+ and inositol 1,4,5-trisphosphate oscillation frequency. Receptor density versus agonist concentration. J Biol Chem. 2002 Jul 15;277(39):35947–35960. doi: 10.1074/jbc.M205622200. [DOI] [PubMed] [Google Scholar]
  30. Putney J. W., Jr Excitement about calcium signaling in inexcitable cells. Science. 1993 Oct 29;262(5134):676–678. doi: 10.1126/science.8235587. [DOI] [PubMed] [Google Scholar]
  31. Schell M. J., Erneux C., Irvine R. F. Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J Biol Chem. 2001 Jul 23;276(40):37537–37546. doi: 10.1074/jbc.M104101200. [DOI] [PubMed] [Google Scholar]
  32. Smith P. M., Harmer A. R., Letcher A. J., Irvine R. F. The effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-induced Ca2+ mobilization in freshly isolated and cultured mouse lacrimal acinar cells. Biochem J. 2000 Apr 1;347(Pt 1):77–82. [PMC free article] [PubMed] [Google Scholar]
  33. Soriano S., Thomas S., High S., Griffiths G., D'santos C., Cullen P., Banting G. Membrane association, localization and topology of rat inositol 1,4,5-trisphosphate 3-kinase B: implications for membrane traffic and Ca2+ homoeostasis. Biochem J. 1997 Jun 1;324(Pt 2):579–589. doi: 10.1042/bj3240579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Streb H., Heslop J. P., Irvine R. F., Schulz I., Berridge M. J. Relationship between secretagogue-induced Ca2+ release and inositol polyphosphate production in permeabilized pancreatic acinar cells. J Biol Chem. 1985 Jun 25;260(12):7309–7315. [PubMed] [Google Scholar]
  35. Takazawa K., Lemos M., Delvaux A., Lejeune C., Dumont J. E., Erneux C. Rat brain inositol 1,4,5-trisphosphate 3-kinase. Ca2(+)-sensitivity, purification and antibody production. Biochem J. 1990 May 15;268(1):213–217. doi: 10.1042/bj2680213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Takazawa K., Passareiro H., Dumont J. E., Erneux C. Ca2+/calmodulin-sensitive inositol 1,4,5-trisphosphate 3-kinase in rat and bovine brain tissues. Biochem Biophys Res Commun. 1988 Jun 16;153(2):632–641. doi: 10.1016/s0006-291x(88)81142-2. [DOI] [PubMed] [Google Scholar]
  37. Takazawa K., Perret J., Dumont J. E., Erneux C. Molecular cloning and expression of a human brain inositol 1,4,5-trisphosphate 3-kinase. Biochem Biophys Res Commun. 1991 Jan 31;174(2):529–535. doi: 10.1016/0006-291x(91)91449-m. [DOI] [PubMed] [Google Scholar]
  38. Thomas S., Brake B., Luzio J. P., Stanley K., Banting G. Isolation and sequence of a full length cDNA encoding a novel rat inositol 1,4,5-trisphosphate 3-kinase. Biochim Biophys Acta. 1994 Jan 13;1220(2):219–222. doi: 10.1016/0167-4889(94)90139-2. [DOI] [PubMed] [Google Scholar]
  39. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  40. Wilson M. P., Majerus P. W. Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, cDNA cloning and expression of the recombinant enzyme. J Biol Chem. 1996 May 17;271(20):11904–11910. doi: 10.1074/jbc.271.20.11904. [DOI] [PubMed] [Google Scholar]
  41. Yang X., Shears S. B. Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P(4) 1-kinase/Ins(1,3,4)P(3) 5/6-kinase. Biochem J. 2000 Nov 1;351(Pt 3):551–555. [PMC free article] [PubMed] [Google Scholar]
  42. Zhu D. M., Tekle E., Huang C. Y., Chock P. B. Inositol tetrakisphosphate as a frequency regulator in calcium oscillations in HeLa cells. J Biol Chem. 2000 Mar 3;275(9):6063–6066. doi: 10.1074/jbc.275.9.6063. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES