Abstract
Inositol 1,4,5-trisphosphate [Ins(1,4,5) P3] 3-kinase catalyses the phosphorylation of InsP3 to inositol 1,3,4,5-tetrakisphosphate. cDNAs encoding three human isoenzymes of InsP3 3-kinase (A, B and C) have been reported previously [Choi, Kim, Lee, Moon, Sim, Kim, Chung and Rhee (1990) Science 248, 64-66; Dewaste, Pouillon, Moreau, Shears, Takazawa and Erneux (2000) Biochem. J. 352, 343-351; Dewaste, Roymans, Moreau and Erneux (2002) Biochem. Biophys. Res. Commun. 291, 400-405; Takazawa, Perret, Dumont and Erneux (1991) Biochem. Biophys. Res. Commun. 174, 529-535]. The localization of InsP3 3-kinase isoenzymes fused at their N-terminus to the green fluorescent protein has been studied by confocal microscopy. The A isoform appeared to associate with the cytoskeleton, whereas the C isoform was totally cytoplasmic. The B isoform had a more complex localization: it appeared in the plasma membrane, cytoskeleton and in the endoplasmic reticulum. The three human isoenzymes of InsP3 3-kinase can thus be distinguished by their N-terminal sequence, sensitivity to Ca2+/calmodulin and localization on transfection in COS-7 cells. We have compared the cytosolic Ca2+ responses induced by ATP in COS-7 cells transfected with the three isoenzymes. Cells expressing high levels of any of the three isoforms no longer respond to ATP, whereas cells expressing low levels of each enzyme showed a reduced response consisting of one to three Ca2+ spikes in response to 100 microM ATP. These effects were seen only in wild-type InsP3 3-kinase-transfected cells. 3-Kinase-dead mutant cells behaved as vector-transfected cells. The results highlight the potential role of the three isoforms of InsP3 3-kinase as direct InsP3 metabolizing enzymes and direct regulators of Ca2+ responses to extracellular signals.
Full Text
The Full Text of this article is available as a PDF (348.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
- Changya L., Gallacher D. V., Irvine R. F., Potter B. V., Petersen O. H. Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells. J Membr Biol. 1989 Jul;109(1):85–93. doi: 10.1007/BF01870793. [DOI] [PubMed] [Google Scholar]
- Choi K. Y., Kim H. K., Lee S. Y., Moon K. H., Sim S. S., Kim J. W., Chung H. K., Rhee S. G. Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Science. 1990 Apr 6;248(4951):64–66. doi: 10.1126/science.2157285. [DOI] [PubMed] [Google Scholar]
- Cozier G. E., Lockyer P. J., Reynolds J. S., Kupzig S., Bottomley J. R., Millard T. H., Banting G., Cullen P. J. GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J Biol Chem. 2000 Sep 8;275(36):28261–28268. doi: 10.1074/jbc.M000469200. [DOI] [PubMed] [Google Scholar]
- Cullen P. J., Hsuan J. J., Truong O., Letcher A. J., Jackson T. R., Dawson A. P., Irvine R. F. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature. 1995 Aug 10;376(6540):527–530. doi: 10.1038/376527a0. [DOI] [PubMed] [Google Scholar]
- Cullen P. J., Loomis-Husselbee J., Dawson A. P., Irvine R. F. Inositol 1,3,4,5-tetrakisphosphate and Ca2+ homoeostasis: the role of GAP1IP4BP. Biochem Soc Trans. 1997 Aug;25(3):991–996. doi: 10.1042/bst0250991. [DOI] [PubMed] [Google Scholar]
- De Smedt F., Boom A., Pesesse X., Schiffmann S. N., Erneux C. Post-translational modification of human brain type I inositol-1,4,5-trisphosphate 5-phosphatase by farnesylation. J Biol Chem. 1996 Apr 26;271(17):10419–10424. doi: 10.1074/jbc.271.17.10419. [DOI] [PubMed] [Google Scholar]
- De Smedt F., Missiaen L., Parys J. B., Vanweyenberg V., De Smedt H., Erneux C. Isoprenylated human brain type I inositol 1,4,5-trisphosphate 5-phosphatase controls Ca2+ oscillations induced by ATP in Chinese hamster ovary cells. J Biol Chem. 1997 Jul 11;272(28):17367–17375. doi: 10.1074/jbc.272.28.17367. [DOI] [PubMed] [Google Scholar]
- Dewaste V., Pouillon V., Moreau C., Shears S., Takazawa K., Erneux C. Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C. Biochem J. 2000 Dec 1;352(Pt 2):343–351. [PMC free article] [PubMed] [Google Scholar]
- Dewaste Valérie, Roymans Dirk, Moreau Colette, Erneux Christophe. Cloning and expression of a full-length cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase B. Biochem Biophys Res Commun. 2002 Feb 22;291(2):400–405. doi: 10.1006/bbrc.2002.6456. [DOI] [PubMed] [Google Scholar]
- Dupont G., Erneux C. Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell Calcium. 1997 Nov;22(5):321–331. doi: 10.1016/s0143-4160(97)90017-8. [DOI] [PubMed] [Google Scholar]
- Erneux C., Govaerts C., Communi D., Pesesse X. The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):185–199. doi: 10.1016/s0005-2760(98)00132-5. [DOI] [PubMed] [Google Scholar]
- Goldbeter A., Dupont G., Berridge M. J. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1461–1465. doi: 10.1073/pnas.87.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harmer Alexander R., Gallacher David V., Smith Peter M. Correlations between the functional integrity of the endoplasmic reticulum and polarized Ca2+ signalling in mouse lacrimal acinar cells: a role for inositol 1,3,4,5-tetrakisphosphate. Biochem J. 2002 Oct 1;367(Pt 1):137–143. doi: 10.1042/BJ20020305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermosura M. C., Takeuchi H., Fleig A., Riley A. M., Potter B. V., Hirata M., Penner R. InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature. 2000 Dec 7;408(6813):735–740. doi: 10.1038/35047115. [DOI] [PubMed] [Google Scholar]
- Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
- Irvine R. F. Is inositol tetrakisphosphate the second messenger that controls Ca2+ entry into cells? Adv Second Messenger Phosphoprotein Res. 1992;26:161–185. [PubMed] [Google Scholar]
- Irvine R. F., Letcher A. J., Heslop J. P., Berridge M. J. The inositol tris/tetrakisphosphate pathway--demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature. 1986 Apr 17;320(6063):631–634. doi: 10.1038/320631a0. [DOI] [PubMed] [Google Scholar]
- Irvine R. F., Schell M. J. Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol. 2001 May;2(5):327–338. doi: 10.1038/35073015. [DOI] [PubMed] [Google Scholar]
- Khan A. A., Steiner J. P., Klein M. G., Schneider M. F., Snyder S. H. IP3 receptor: localization to plasma membrane of T cells and cocapping with the T cell receptor. Science. 1992 Aug 7;257(5071):815–818. doi: 10.1126/science.1323146. [DOI] [PubMed] [Google Scholar]
- Khan A. A., Steiner J. P., Snyder S. H. Plasma membrane inositol 1,4,5-trisphosphate receptor of lymphocytes: selective enrichment in sialic acid and unique binding specificity. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2849–2853. doi: 10.1073/pnas.89.7.2849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin A. N., Barnes S., Wallace R. W. Phosphorylation by protein kinase C inactivates an inositol 1,4,5-trisphosphate 3-kinase purified from human platelets. Biochem Biophys Res Commun. 1990 Aug 16;170(3):1371–1376. doi: 10.1016/0006-291x(90)90546-y. [DOI] [PubMed] [Google Scholar]
- Majerus P. W., Kisseleva M. V., Norris F. A. The role of phosphatases in inositol signaling reactions. J Biol Chem. 1999 Apr 16;274(16):10669–10672. doi: 10.1074/jbc.274.16.10669. [DOI] [PubMed] [Google Scholar]
- Meyer T., Stryer L. Calcium spiking. Annu Rev Biophys Biophys Chem. 1991;20:153–174. doi: 10.1146/annurev.bb.20.060191.001101. [DOI] [PubMed] [Google Scholar]
- Mikoshiba K., Furuichi T., Miyawaki A., Yoshikawa S., Nakade S., Michikawa T., Nakagawa T., Okano H., Kume S., Muto A. Structure and function of inositol 1,4,5-trisphosphate receptor. Ann N Y Acad Sci. 1993 Dec 20;707:178–197. doi: 10.1111/j.1749-6632.1993.tb38052.x. [DOI] [PubMed] [Google Scholar]
- Millard T. H., Cullen P. J., Banting G. Effects of elevated expression of inositol 1,4,5-trisphosphate 3-kinase B on Ca2+ homoeostasis in HeLa cells. Biochem J. 2000 Dec 15;352(Pt 3):709–715. [PMC free article] [PubMed] [Google Scholar]
- Mitchell Christina A., Gurung Rajendra, Kong Anne M., Dyson Jennifer M., Tan April, Ooms Lisa M. Inositol polyphosphate 5-phosphatases: lipid phosphatases with flair. IUBMB Life. 2002 Jan;53(1):25–36. doi: 10.1080/15216540210815. [DOI] [PubMed] [Google Scholar]
- Nalaskowski Marcus M., Bertsch Uwe, Fanick Werner, Stockebrand Malte C., Schmale Hartwig, Mayr Georg W. Rat inositol 1,4,5-trisphosphate 3-kinase C is enzymatically specialized for basal cellular inositol trisphosphate phosphorylation and shuttles actively between nucleus and cytoplasm. J Biol Chem. 2003 Mar 20;278(22):19765–19776. doi: 10.1074/jbc.M211059200. [DOI] [PubMed] [Google Scholar]
- Nash Mark S., Schell Michael J., Atkinson Peter J., Johnston Neil R., Nahorski Stefan R., Challiss R. A. John. Determinants of metabotropic glutamate receptor-5-mediated Ca2+ and inositol 1,4,5-trisphosphate oscillation frequency. Receptor density versus agonist concentration. J Biol Chem. 2002 Jul 15;277(39):35947–35960. doi: 10.1074/jbc.M205622200. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr Excitement about calcium signaling in inexcitable cells. Science. 1993 Oct 29;262(5134):676–678. doi: 10.1126/science.8235587. [DOI] [PubMed] [Google Scholar]
- Schell M. J., Erneux C., Irvine R. F. Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J Biol Chem. 2001 Jul 23;276(40):37537–37546. doi: 10.1074/jbc.M104101200. [DOI] [PubMed] [Google Scholar]
- Smith P. M., Harmer A. R., Letcher A. J., Irvine R. F. The effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-induced Ca2+ mobilization in freshly isolated and cultured mouse lacrimal acinar cells. Biochem J. 2000 Apr 1;347(Pt 1):77–82. [PMC free article] [PubMed] [Google Scholar]
- Soriano S., Thomas S., High S., Griffiths G., D'santos C., Cullen P., Banting G. Membrane association, localization and topology of rat inositol 1,4,5-trisphosphate 3-kinase B: implications for membrane traffic and Ca2+ homoeostasis. Biochem J. 1997 Jun 1;324(Pt 2):579–589. doi: 10.1042/bj3240579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streb H., Heslop J. P., Irvine R. F., Schulz I., Berridge M. J. Relationship between secretagogue-induced Ca2+ release and inositol polyphosphate production in permeabilized pancreatic acinar cells. J Biol Chem. 1985 Jun 25;260(12):7309–7315. [PubMed] [Google Scholar]
- Takazawa K., Lemos M., Delvaux A., Lejeune C., Dumont J. E., Erneux C. Rat brain inositol 1,4,5-trisphosphate 3-kinase. Ca2(+)-sensitivity, purification and antibody production. Biochem J. 1990 May 15;268(1):213–217. doi: 10.1042/bj2680213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takazawa K., Passareiro H., Dumont J. E., Erneux C. Ca2+/calmodulin-sensitive inositol 1,4,5-trisphosphate 3-kinase in rat and bovine brain tissues. Biochem Biophys Res Commun. 1988 Jun 16;153(2):632–641. doi: 10.1016/s0006-291x(88)81142-2. [DOI] [PubMed] [Google Scholar]
- Takazawa K., Perret J., Dumont J. E., Erneux C. Molecular cloning and expression of a human brain inositol 1,4,5-trisphosphate 3-kinase. Biochem Biophys Res Commun. 1991 Jan 31;174(2):529–535. doi: 10.1016/0006-291x(91)91449-m. [DOI] [PubMed] [Google Scholar]
- Thomas S., Brake B., Luzio J. P., Stanley K., Banting G. Isolation and sequence of a full length cDNA encoding a novel rat inositol 1,4,5-trisphosphate 3-kinase. Biochim Biophys Acta. 1994 Jan 13;1220(2):219–222. doi: 10.1016/0167-4889(94)90139-2. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
- Wilson M. P., Majerus P. W. Isolation of inositol 1,3,4-trisphosphate 5/6-kinase, cDNA cloning and expression of the recombinant enzyme. J Biol Chem. 1996 May 17;271(20):11904–11910. doi: 10.1074/jbc.271.20.11904. [DOI] [PubMed] [Google Scholar]
- Yang X., Shears S. B. Multitasking in signal transduction by a promiscuous human Ins(3,4,5,6)P(4) 1-kinase/Ins(1,3,4)P(3) 5/6-kinase. Biochem J. 2000 Nov 1;351(Pt 3):551–555. [PMC free article] [PubMed] [Google Scholar]
- Zhu D. M., Tekle E., Huang C. Y., Chock P. B. Inositol tetrakisphosphate as a frequency regulator in calcium oscillations in HeLa cells. J Biol Chem. 2000 Mar 3;275(9):6063–6066. doi: 10.1074/jbc.275.9.6063. [DOI] [PubMed] [Google Scholar]