Abstract
In 1321N1 astrocytoma cells, carbachol stimulation of M3 muscarinic cholinergic receptors, coupled to phospholipase C, evoked a persistent 10-20-fold activation of p70 S6 kinase (S6K1). This response was abolished by chelation of cytosolic Ca2+ and reproduced by the Ca2+ ionophore ionomycin, but was not prevented by down-regulation or inhibition of protein kinase C. Carbachol-stimulated activation and phosphorylation of S6K1 at Thr389 were prevented by rapamycin, an inhibitor of mTOR (mammalian target of rapamycin), or by wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor. Carbachol also stimulated the phosphorylation of eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), a second mTOR-dependent event, with similar potency to its effect on S6K1. This response was blocked by rapamycin, but was not markedly affected by 100 nM wortmannin, implying separate roles for mTOR and PI3K in S6K1 activation. Wortmannin abolished the carbachol-stimulated rise in PtdIns(3,4,5)P3 and greatly reduced unstimulated levels of this lipid. By contrast, an inhibitor of epidermal growth factor receptor kinase, AG1478, which prevents carbachol-stimulated ErbB3 transactivation, PI3K recruitment and protein kinase B activation in 1321N1 cells, reduced activation of S6K1 by no more than 30%. This effect was overcome by 10 nM insulin, which on its own did not stimulate S6K1, but increased cellular PtdIns(3,4,5)P3 concentrations comparably with carbachol alone. These observations distinguish obligatory roles for mTOR and PI3K in regulating S6K1, but imply that minimal PI3K activity is sufficient to permit stimulation of S6K1 by other activating factors such as increased cytosolic Ca2+ concentrations, which are essential to the muscarinic receptor-mediated response. Moreover, 4E-BP1 and hence, presumably, mTOR can be regulated independently of PI3K activation through these mechanisms.
Full Text
The Full Text of this article is available as a PDF (189.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D. R., Kozlowski M. T., Weng Q. P., Morrice N., Avruch J. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol. 1998 Jan 15;8(2):69–81. doi: 10.1016/s0960-9822(98)70037-5. [DOI] [PubMed] [Google Scholar]
- Alessi D. R. The protein kinase C inhibitors Ro 318220 and GF 109203X are equally potent inhibitors of MAPKAP kinase-1beta (Rsk-2) and p70 S6 kinase. FEBS Lett. 1997 Feb 3;402(2-3):121–123. doi: 10.1016/s0014-5793(96)01510-4. [DOI] [PubMed] [Google Scholar]
- Ashkenazi A., Peralta E. G., Winslow J. W., Ramachandran J., Capon D. J. Functional diversity of muscarinic receptor subtypes in cellular signal transduction and growth. Trends Pharmacol Sci. 1989 Dec;Suppl:16–22. [PubMed] [Google Scholar]
- Ballou L. M., Cross M. E., Huang S., McReynolds E. M., Zhang B. X., Lin R. Z. Differential regulation of the phosphatidylinositol 3-kinase/Akt and p70 S6 kinase pathways by the alpha(1A)-adrenergic receptor in rat-1 fibroblasts. J Biol Chem. 2000 Feb 18;275(7):4803–4809. doi: 10.1074/jbc.275.7.4803. [DOI] [PubMed] [Google Scholar]
- Batty I. H., Downes C. P. The inhibition of phosphoinositide synthesis and muscarinic-receptor-mediated phospholipase C activity by Li+ as secondary, selective, consequences of inositol depletion in 1321N1 cells. Biochem J. 1994 Feb 1;297(Pt 3):529–537. doi: 10.1042/bj2970529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Batty I. H., Downes C. P. Thrombin receptors modulate insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation in 1321N1 astrocytoma cells. Biochem J. 1996 Jul 15;317(Pt 2):347–351. doi: 10.1042/bj3170347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biondi R. M., Kieloch A., Currie R. A., Deak M., Alessi D. R. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J. 2001 Aug 15;20(16):4380–4390. doi: 10.1093/emboj/20.16.4380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunn G. J., Williams J., Sabers C., Wiederrecht G., Lawrence J. C., Jr, Abraham R. T. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J. 1996 Oct 1;15(19):5256–5267. [PMC free article] [PubMed] [Google Scholar]
- Chou M. M., Blenis J. The 70 kDa S6 kinase: regulation of a kinase with multiple roles in mitogenic signalling. Curr Opin Cell Biol. 1995 Dec;7(6):806–814. doi: 10.1016/0955-0674(95)80064-6. [DOI] [PubMed] [Google Scholar]
- Chung J., Kuo C. J., Crabtree G. R., Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992 Jun 26;69(7):1227–1236. doi: 10.1016/0092-8674(92)90643-q. [DOI] [PubMed] [Google Scholar]
- Currie R. A., Walker K. S., Gray A., Deak M., Casamayor A., Downes C. P., Cohen P., Alessi D. R., Lucocq J. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J. 1999 Feb 1;337(Pt 3):575–583. [PMC free article] [PubMed] [Google Scholar]
- Dennis P. B., Fumagalli S., Thomas G. Target of rapamycin (TOR): balancing the opposing forces of protein synthesis and degradation. Curr Opin Genet Dev. 1999 Feb;9(1):49–54. doi: 10.1016/s0959-437x(99)80007-0. [DOI] [PubMed] [Google Scholar]
- Dennis P. B., Jaeschke A., Saitoh M., Fowler B., Kozma S. C., Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science. 2001 Nov 2;294(5544):1102–1105. doi: 10.1126/science.1063518. [DOI] [PubMed] [Google Scholar]
- Desbois C., Huërou-Luron I. L., Dufresne M., Estival A., Clerc P., Romé V., Clemente F., Guilloteau P., Fourmy D. The CCKB/gastrin receptor is coupled to the regulation of enzyme secretion, protein synthesis and p70 S6 kinase activity in acinar cells from ElasCCKB transgenic mice. Eur J Biochem. 1999 Dec;266(3):1003–1010. doi: 10.1046/j.1432-1327.1999.00939.x. [DOI] [PubMed] [Google Scholar]
- Dufner A., Thomas G. Ribosomal S6 kinase signaling and the control of translation. Exp Cell Res. 1999 Nov 25;253(1):100–109. doi: 10.1006/excr.1999.4683. [DOI] [PubMed] [Google Scholar]
- Fang Y., Vilella-Bach M., Bachmann R., Flanigan A., Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science. 2001 Nov 30;294(5548):1942–1945. doi: 10.1126/science.1066015. [DOI] [PubMed] [Google Scholar]
- Ferrari S., Bannwarth W., Morley S. J., Totty N. F., Thomas G. Activation of p70s6k is associated with phosphorylation of four clustered sites displaying Ser/Thr-Pro motifs. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7282–7286. doi: 10.1073/pnas.89.15.7282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrari S., Thomas G. S6 phosphorylation and the p70s6k/p85s6k. Crit Rev Biochem Mol Biol. 1994;29(6):385–413. doi: 10.3109/10409239409083485. [DOI] [PubMed] [Google Scholar]
- Gao Xinsheng, Zhang Yong, Arrazola Peter, Hino Okio, Kobayashi Toshiyuki, Yeung Raymond S., Ru Binggeng, Pan Duojia. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol. 2002 Sep;4(9):699–704. doi: 10.1038/ncb847. [DOI] [PubMed] [Google Scholar]
- Gingras A. C., Raught B., Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–963. doi: 10.1146/annurev.biochem.68.1.913. [DOI] [PubMed] [Google Scholar]
- Gout I., Minami T., Hara K., Tsujishita Y., Filonenko V., Waterfield M. D., Yonezawa K. Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region. J Biol Chem. 1998 Nov 13;273(46):30061–30064. doi: 10.1074/jbc.273.46.30061. [DOI] [PubMed] [Google Scholar]
- Graves L. M., He Y., Lambert J., Hunter D., Li X., Earp H. S. An intracellular calcium signal activates p70 but not p90 ribosomal S6 kinase in liver epithelial cells. J Biol Chem. 1997 Jan 17;272(3):1920–1928. doi: 10.1074/jbc.272.3.1920. [DOI] [PubMed] [Google Scholar]
- Han J. W., Pearson R. B., Dennis P. B., Thomas G. Rapamycin, wortmannin, and the methylxanthine SQ20006 inactivate p70s6k by inducing dephosphorylation of the same subset of sites. J Biol Chem. 1995 Sep 8;270(36):21396–21403. doi: 10.1074/jbc.270.36.21396. [DOI] [PubMed] [Google Scholar]
- Isotani S., Hara K., Tokunaga C., Inoue H., Avruch J., Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999 Nov 26;274(48):34493–34498. doi: 10.1074/jbc.274.48.34493. [DOI] [PubMed] [Google Scholar]
- Jefferies H. B., Fumagalli S., Dennis P. B., Reinhard C., Pearson R. B., Thomas G. Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997 Jun 16;16(12):3693–3704. doi: 10.1093/emboj/16.12.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane H. A., Fernandez A., Lamb N. J., Thomas G. p70s6k function is essential for G1 progression. Nature. 1993 May 13;363(6425):170–172. doi: 10.1038/363170a0. [DOI] [PubMed] [Google Scholar]
- Lee-Fruman K. K., Kuo C. J., Lippincott J., Terada N., Blenis J. Characterization of S6K2, a novel kinase homologous to S6K1. Oncogene. 1999 Sep 9;18(36):5108–5114. doi: 10.1038/sj.onc.1202894. [DOI] [PubMed] [Google Scholar]
- Manning Brendan D., Tee Andrew R., Logsdon M. Nicole, Blenis John, Cantley Lewis C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002 Jul;10(1):151–162. doi: 10.1016/s1097-2765(02)00568-3. [DOI] [PubMed] [Google Scholar]
- Montagne J., Stewart M. J., Stocker H., Hafen E., Kozma S. C., Thomas G. Drosophila S6 kinase: a regulator of cell size. Science. 1999 Sep 24;285(5436):2126–2129. doi: 10.1126/science.285.5436.2126. [DOI] [PubMed] [Google Scholar]
- Parekh D. B., Katso R. M., Leslie N. R., Downes C. P., Procyk K. J., Waterfield M. D., Parker P. J. Beta1-integrin and PTEN control the phosphorylation of protein kinase C. Biochem J. 2000 Dec 1;352(Pt 2):425–433. [PMC free article] [PubMed] [Google Scholar]
- Pearson R. B., Dennis P. B., Han J. W., Williamson N. A., Kozma S. C., Wettenhall R. E., Thomas G. The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J. 1995 Nov 1;14(21):5279–5287. doi: 10.1002/j.1460-2075.1995.tb00212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polakiewicz R. D., Schieferl S. M., Gingras A. C., Sonenberg N., Comb M. J. mu-Opioid receptor activates signaling pathways implicated in cell survival and translational control. J Biol Chem. 1998 Sep 4;273(36):23534–23541. doi: 10.1074/jbc.273.36.23534. [DOI] [PubMed] [Google Scholar]
- Potter Christopher J., Pedraza Laura G., Xu Tian. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002 Sep;4(9):658–665. doi: 10.1038/ncb840. [DOI] [PubMed] [Google Scholar]
- Price D. J., Grove J. R., Calvo V., Avruch J., Bierer B. E. Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science. 1992 Aug 14;257(5072):973–977. doi: 10.1126/science.1380182. [DOI] [PubMed] [Google Scholar]
- Purkiss J. R. Protein kinase C modulation of phosphoinositidase C in 1321N1 human astrocytoma cells. Biochem Soc Trans. 1996 Feb;24(1):54S–54S. doi: 10.1042/bst024054s. [DOI] [PubMed] [Google Scholar]
- Radimerski Thomas, Montagne Jacques, Rintelen Felix, Stocker Hugo, van der Kaay Jeroen, Downes C. Peter, Hafen Ernst, Thomas George. dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nat Cell Biol. 2002 Mar;4(3):251–255. doi: 10.1038/ncb763. [DOI] [PubMed] [Google Scholar]
- Rao G. N., Madamanchi N. R., Lele M., Gadiparthi L., Gingras A. C., Eling T. E., Sonenberg N. A potential role for extracellular signal-regulated kinases in prostaglandin F2alpha-induced protein synthesis in smooth muscle cells. J Biol Chem. 1999 Apr 30;274(18):12925–12932. doi: 10.1074/jbc.274.18.12925. [DOI] [PubMed] [Google Scholar]
- Rubio I., Wetzker R. A permissive function of phosphoinositide 3-kinase in Ras activation mediated by inhibition of GTPase-activating proteins. Curr Biol. 2000 Oct 5;10(19):1225–1228. doi: 10.1016/s0960-9822(00)00731-4. [DOI] [PubMed] [Google Scholar]
- Shima H., Pende M., Chen Y., Fumagalli S., Thomas G., Kozma S. C. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 1998 Nov 16;17(22):6649–6659. doi: 10.1093/emboj/17.22.6649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang X., Downes C. P. Purification and characterization of Gbetagamma-responsive phosphoinositide 3-kinases from pig platelet cytosol. J Biol Chem. 1997 May 30;272(22):14193–14199. doi: 10.1074/jbc.272.22.14193. [DOI] [PubMed] [Google Scholar]
- Tang Xiuwen, Batty Ian H., Downes C. Peter. Muscarinic receptors mediate phospholipase C-dependent activation of protein kinase B via Ca2+, ErbB3, and phosphoinositide 3-kinase in 1321N1 astrocytoma cells. J Biol Chem. 2001 Nov 1;277(1):338–344. doi: 10.1074/jbc.M108927200. [DOI] [PubMed] [Google Scholar]
- Terada N., Patel H. R., Takase K., Kohno K., Nairn A. C., Gelfand E. W. Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11477–11481. doi: 10.1073/pnas.91.24.11477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas G., Hall M. N. TOR signalling and control of cell growth. Curr Opin Cell Biol. 1997 Dec;9(6):782–787. doi: 10.1016/s0955-0674(97)80078-6. [DOI] [PubMed] [Google Scholar]
- Wang L., Gout I., Proud C. G. Cross-talk between the ERK and p70 S6 kinase (S6K) signaling pathways. MEK-dependent activation of S6K2 in cardiomyocytes. J Biol Chem. 2001 Jun 28;276(35):32670–32677. doi: 10.1074/jbc.M102776200. [DOI] [PubMed] [Google Scholar]
- Wang Lijun, Proud Christopher G. Ras/Erk signaling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes. Circ Res. 2002 Nov 1;91(9):821–829. doi: 10.1161/01.res.0000041029.97988.e9. [DOI] [PubMed] [Google Scholar]
- Wang Lijun, Proud Christopher G. Ras/Erk signaling is essential for activation of protein synthesis by Gq protein-coupled receptor agonists in adult cardiomyocytes. Circ Res. 2002 Nov 1;91(9):821–829. doi: 10.1161/01.res.0000041029.97988.e9. [DOI] [PubMed] [Google Scholar]
- Wang X., Li W., Williams M., Terada N., Alessi D. R., Proud C. G. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001 Aug 15;20(16):4370–4379. doi: 10.1093/emboj/20.16.4370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wennström S., Downward J. Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol. 1999 Jun;19(6):4279–4288. doi: 10.1128/mcb.19.6.4279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Kaay J., Batty I. H., Cross D. A., Watt P. W., Downes C. P. A novel, rapid, and highly sensitive mass assay for phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and its application to measure insulin-stimulated PtdIns(3,4,5)P3 production in rat skeletal muscle in vivo. J Biol Chem. 1997 Feb 28;272(9):5477–5481. doi: 10.1074/jbc.272.9.5477. [DOI] [PubMed] [Google Scholar]