Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):27–36. doi: 10.1042/BJ20030301

Characterization of a cysteine-less human reduced folate carrier: localization of a substrate-binding domain by cysteine-scanning mutagenesis and cysteine accessibility methods.

Wei Cao 1, Larry H Matherly 1
PMCID: PMC1223575  PMID: 12749765

Abstract

The human reduced folate carrier (hRFC) mediates the transport of reduced folates and classical anti-folates into mammalian cells. Whereas the functionally important domains in hRFC are poorly characterized, previous studies with anti-folate-resistant cells suggest critical roles for transmembrane domain (TMD) 1 and residues (Gly44, Glu45, Ser46 and Ile48) in or flanking this region. An hRFC mutant devoid of cysteine residues was prepared by deleting the C-terminal 56 amino acids, including four cysteine residues, and mutagenizing the remaining cysteine residues to serine residues. A fully functional cysteine-less hRFC protein was expressed in transport-impaired MtxRIIOuaR2-4 Chinese-hamster ovary cells. To explore the role of residues in or flanking TMD1 in transport, all 24 amino acids from Trp25 to Ile48 of hRFC were mutated individually to cysteine residues, and the mutant hRFCs were transfected into MtxRIIOuaR2-4 cells. All of the 24 cysteine mutants were expressed and, with the exception of R42C (Arg42-->Cys), were capable of mediating methotrexate uptake above the low level in MtxRIIOuaR2-4 cells. We found that by treating the transfected cells with the small, water-soluble, thiol-reactive anionic reagent, sodium (2-sulphonatoethyl) methanethiosulphonate, methotrexate transport by several of the cysteine-substituted hRFC mutants was significantly inhibited, including Q40C, G44C, E45C and I48C. Sodium (2-sulphonatoethyl) methanethiosulphonate transport inhibition of the Q40C, G44C and I48C mutants was protected by leucovorin [(6R, S)-5-formyltetrahydrofolate], indicating that these residues lie at or near a substrate-binding site. Using surface-labelling reagents [N-biotinylaminoethyl methanethiosulphonate and 3-(N-maleimidylpropionyl)biocytin, combined with 4-acetamido-4'-maleimidylstilbene-2,2'-disulphonic acid] with cysteine mutants from positions 37-48, the extracellular TMD1 boundary was found to lie between residues 39 and 40, and amino acids 44-46 and 48 were localized to the TMD1 exofacial loop. Collectively, our results imply that amino acids 40, 44, 48 and, possibly, 42 serve important roles in hRFC transport, albeit not as structural components of the putative transmembrane channel for folate substrates.

Full Text

The Full Text of this article is available as a PDF (281.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H., Stauffer D. A., Xu M., Karlin A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science. 1992 Oct 9;258(5080):307–310. doi: 10.1126/science.1384130. [DOI] [PubMed] [Google Scholar]
  2. Butterworth C. E., Jr, Bendich A. Folic acid and the prevention of birth defects. Annu Rev Nutr. 1996;16:73–97. doi: 10.1146/annurev.nu.16.070196.000445. [DOI] [PubMed] [Google Scholar]
  3. Chan B. S., Satriano J. A., Schuster V. L. Mapping the substrate binding site of the prostaglandin transporter PGT by cysteine scanning mutagenesis. J Biol Chem. 1999 Sep 3;274(36):25564–25570. doi: 10.1074/jbc.274.36.25564. [DOI] [PubMed] [Google Scholar]
  4. Combet C., Blanchet C., Geourjon C., Deléage G. NPS@: network protein sequence analysis. Trends Biochem Sci. 2000 Mar;25(3):147–150. doi: 10.1016/s0968-0004(99)01540-6. [DOI] [PubMed] [Google Scholar]
  5. Dodd J. R., Christie D. L. Cysteine 144 in the third transmembrane domain of the creatine transporter is located close to a substrate-binding site. J Biol Chem. 2001 Oct 11;276(50):46983–46988. doi: 10.1074/jbc.M107137200. [DOI] [PubMed] [Google Scholar]
  6. Drori S., Jansen G., Mauritz R., Peters G. J., Assaraf Y. G. Clustering of mutations in the first transmembrane domain of the human reduced folate carrier in GW1843U89-resistant leukemia cells with impaired antifolate transport and augmented folate uptake. J Biol Chem. 2000 Oct 6;275(40):30855–30863. doi: 10.1074/jbc.M003988200. [DOI] [PubMed] [Google Scholar]
  7. Ferguson P. L., Flintoff W. F. Topological and functional analysis of the human reduced folate carrier by hemagglutinin epitope insertion. J Biol Chem. 1999 Jun 4;274(23):16269–16278. doi: 10.1074/jbc.274.23.16269. [DOI] [PubMed] [Google Scholar]
  8. Ferrer J. V., Javitch J. A. Cocaine alters the accessibility of endogenous cysteines in putative extracellular and intracellular loops of the human dopamine transporter. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9238–9243. doi: 10.1073/pnas.95.16.9238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flintoff W. F., Davidson S. V., Siminovitch L. Isolation and partial characterization of three methotrexate-resistant phenotypes from Chinese hamster ovary cells. Somatic Cell Genet. 1976 May;2(3):245–261. doi: 10.1007/BF01538963. [DOI] [PubMed] [Google Scholar]
  10. Frillingos S., Sahin-Tóth M., Wu J., Kaback H. R. Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J. 1998 Oct;12(13):1281–1299. doi: 10.1096/fasebj.12.13.1281. [DOI] [PubMed] [Google Scholar]
  11. Fry D. W., Yalowich J. C., Goldman I. D. Rapid formation of poly-gamma-glutamyl derivatives of methotrexate and their association with dihydrofolate reductase as assessed by high pressure liquid chromatography in the Ehrlich ascites tumor cell in vitro. J Biol Chem. 1982 Feb 25;257(4):1890–1896. [PubMed] [Google Scholar]
  12. Gifford A. J., Haber M., Witt T. L., Whetstine J. R., Taub J. W., Matherly L. H., Norris M. D. Role of the E45K-reduced folate carrier gene mutation in methotrexate resistance in human leukemia cells. Leukemia. 2002 Dec;16(12):2379–2387. doi: 10.1038/sj.leu.2402655. [DOI] [PubMed] [Google Scholar]
  13. Goldman I. D., Lichtenstein N. S., Oliverio V. T. Carrier-mediated transport of the folic acid analogue, methotrexate, in the L1210 leukemia cell. J Biol Chem. 1968 Oct 10;243(19):5007–5017. [PubMed] [Google Scholar]
  14. Goldman I. D., Matherly L. H. The cellular pharmacology of methotrexate. Pharmacol Ther. 1985;28(1):77–102. doi: 10.1016/0163-7258(85)90083-x. [DOI] [PubMed] [Google Scholar]
  15. Gorlick R., Cole P., Banerjee D., Longo G., Li W. W., Hochhauser D., Bertino J. R. Mechanisms of methotrexate resistance in acute leukemia. Decreased transport and polyglutamylation. Adv Exp Med Biol. 1999;457:543–550. doi: 10.1007/978-1-4615-4811-9_59. [DOI] [PubMed] [Google Scholar]
  16. Guo W., Healey J. H., Meyers P. A., Ladanyi M., Huvos A. G., Bertino J. R., Gorlick R. Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res. 1999 Mar;5(3):621–627. [PubMed] [Google Scholar]
  17. Horton R. M., Cai Z. L., Ho S. N., Pease L. R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 1990 May;8(5):528–535. [PubMed] [Google Scholar]
  18. Hu Y. K., Kaplan J. H. Site-directed chemical labeling of extracellular loops in a membrane protein. The topology of the Na,K-ATPase alpha-subunit. J Biol Chem. 2000 Jun 23;275(25):19185–19191. doi: 10.1074/jbc.M000641200. [DOI] [PubMed] [Google Scholar]
  19. Hu Y. K., Kaplan J. H. Site-directed chemical labeling of extracellular loops in a membrane protein. The topology of the Na,K-ATPase alpha-subunit. J Biol Chem. 2000 Jun 23;275(25):19185–19191. doi: 10.1074/jbc.M000641200. [DOI] [PubMed] [Google Scholar]
  20. Jansen G., Mauritz R., Drori S., Sprecher H., Kathmann I., Bunni M., Priest D. G., Noordhuis P., Schornagel J. H., Pinedo H. M. A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem. 1998 Nov 13;273(46):30189–30198. doi: 10.1074/jbc.273.46.30189. [DOI] [PubMed] [Google Scholar]
  21. Javitch J. A., Li X., Kaback J., Karlin A. A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10355–10359. doi: 10.1073/pnas.91.22.10355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Karlin A., Akabas M. H. Substituted-cysteine accessibility method. Methods Enzymol. 1998;293:123–145. doi: 10.1016/s0076-6879(98)93011-7. [DOI] [PubMed] [Google Scholar]
  23. Kimura-Someya T., Iwaki S., Konishi S., Tamura N., Kubo Y., Yamaguchi A. Cysteine-scanning mutagenesis around transmembrane segments 1 and 11 and their flanking loop regions of Tn10-encoded metal-Tetracycline/H+ antiporter. J Biol Chem. 2000 Jun 23;275(25):18692–18697. doi: 10.1074/jbc.M000354200. [DOI] [PubMed] [Google Scholar]
  24. Kwaw I., Zen K. C., Hu Y., Kaback H. R. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helices IV and V that contain the major determinants for substrate binding. Biochemistry. 2001 Sep 4;40(35):10491–10499. doi: 10.1021/bi010866x. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Liu X. Y., Matherly L. H. Functional interactions between arginine-133 and aspartate-88 in the human reduced folate carrier: evidence for a charge-pair association. Biochem J. 2001 Sep 1;358(Pt 2):511–516. doi: 10.1042/0264-6021:3580511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Liu Xiang Y., Matherly Larry H. Analysis of membrane topology of the human reduced folate carrier protein by hemagglutinin epitope insertion and scanning glycosylation insertion mutagenesis. Biochim Biophys Acta. 2002 Aug 31;1564(2):333–342. doi: 10.1016/s0005-2736(02)00467-4. [DOI] [PubMed] [Google Scholar]
  29. Loo T. W., Clarke D. M. Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. J Biol Chem. 2001 Feb 14;276(18):14972–14979. doi: 10.1074/jbc.M100407200. [DOI] [PubMed] [Google Scholar]
  30. Loo T. W., Clarke D. M. Determining the dimensions of the drug-binding domain of human P-glycoprotein using thiol cross-linking compounds as molecular rulers. J Biol Chem. 2001 Aug 22;276(40):36877–36880. doi: 10.1074/jbc.C100467200. [DOI] [PubMed] [Google Scholar]
  31. Loo T. W., Clarke D. M. Determining the structure and mechanism of the human multidrug resistance P-glycoprotein using cysteine-scanning mutagenesis and thiol-modification techniques. Biochim Biophys Acta. 1999 Dec 6;1461(2):315–325. doi: 10.1016/s0005-2736(99)00165-0. [DOI] [PubMed] [Google Scholar]
  32. Loo T. W., Clarke D. M. Identification of residues within the drug-binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane. J Biol Chem. 2000 Dec 15;275(50):39272–39278. doi: 10.1074/jbc.M007741200. [DOI] [PubMed] [Google Scholar]
  33. Loo T. W., Clarke D. M. Membrane topology of a cysteine-less mutant of human P-glycoprotein. J Biol Chem. 1995 Jan 13;270(2):843–848. doi: 10.1074/jbc.270.2.843. [DOI] [PubMed] [Google Scholar]
  34. Mason J. B., Levesque T. Folate: effects on carcinogenesis and the potential for cancer chemoprevention. Oncology (Williston Park) 1996 Nov;10(11):1727-36, 1742-3; discussion 1743-4. [PubMed] [Google Scholar]
  35. Matherly L. H., Czajkowski C. A., Angeles S. M. Identification of a highly glycosylated methotrexate membrane carrier in K562 human erythroleukemia cells up-regulated for tetrahydrofolate cofactor and methotrexate transport. Cancer Res. 1991 Jul 1;51(13):3420–3426. [PubMed] [Google Scholar]
  36. Matherly L. H. Molecular and cellular biology of the human reduced folate carrier. Prog Nucleic Acid Res Mol Biol. 2001;67:131–162. doi: 10.1016/s0079-6603(01)67027-2. [DOI] [PubMed] [Google Scholar]
  37. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  38. Moscow J. A., Gong M., He R., Sgagias M. K., Dixon K. H., Anzick S. L., Meltzer P. S., Cowan K. H. Isolation of a gene encoding a human reduced folate carrier (RFC1) and analysis of its expression in transport-deficient, methotrexate-resistant human breast cancer cells. Cancer Res. 1995 Sep 1;55(17):3790–3794. [PubMed] [Google Scholar]
  39. Mueckler Mike, Makepeace Carol. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility. J Biol Chem. 2001 Nov 16;277(5):3498–3503. doi: 10.1074/jbc.M109157200. [DOI] [PubMed] [Google Scholar]
  40. Nicoll D. A., Ottolia M., Lu L., Lu Y., Philipson K. D. A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem. 1999 Jan 8;274(2):910–917. doi: 10.1074/jbc.274.2.910. [DOI] [PubMed] [Google Scholar]
  41. Olsowski A., Monden I., Krause G., Keller K. Cysteine scanning mutagenesis of helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments. Biochemistry. 2000 Mar 14;39(10):2469–2474. doi: 10.1021/bi992160x. [DOI] [PubMed] [Google Scholar]
  42. Prasad P. D., Ramamoorthy S., Leibach F. H., Ganapathy V. Molecular cloning of the human placental folate transporter. Biochem Biophys Res Commun. 1995 Jan 17;206(2):681–687. doi: 10.1006/bbrc.1995.1096. [DOI] [PubMed] [Google Scholar]
  43. Qiu Z., Nicoll D. A., Philipson K. D. Helix packing of functionally important regions of the cardiac Na(+)-Ca(2+) exchanger. J Biol Chem. 2001 Jan 5;276(1):194–199. doi: 10.1074/jbc.M005571200. [DOI] [PubMed] [Google Scholar]
  44. Refsum H., Ueland P. M., Nygård O., Vollset S. E. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49:31–62. doi: 10.1146/annurev.med.49.1.31. [DOI] [PubMed] [Google Scholar]
  45. Rothem Lilah, Ifergan Ilan, Kaufman Yotam, Priest David G., Jansen Gerrit, Assaraf Yehuda G. Resistance to multiple novel antifolates is mediated via defective drug transport resulting from clustered mutations in the reduced folate carrier gene in human leukaemia cell lines. Biochem J. 2002 Nov 1;367(Pt 3):741–750. doi: 10.1042/BJ20020801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sadlish Heather, Williams Frederick M. R., Flintoff Wayne F. Functional role of arginine 373 in substrate translocation by the reduced folate carrier. J Biol Chem. 2002 Aug 22;277(44):42105–42112. doi: 10.1074/jbc.M206459200. [DOI] [PubMed] [Google Scholar]
  47. Sharina I. G., Zhao R., Wang Y., Babani S., Goldman I. D. Mutational analysis of the functional role of conserved arginine and lysine residues in transmembrane domains of the murine reduced folate carrier. Mol Pharmacol. 2001 May;59(5):1022–1028. doi: 10.1124/mol.59.5.1022. [DOI] [PubMed] [Google Scholar]
  48. Sirotnak F. M. Obligate genetic expression in tumor cells of a fetal membrane property mediating "folate" transport: biological significance and implications for improved therapy of human cancer. Cancer Res. 1985 Sep;45(9):3992–4000. [PubMed] [Google Scholar]
  49. Sirotnak F. M., Tolner B. Carrier-mediated membrane transport of folates in mammalian cells. Annu Rev Nutr. 1999;19:91–122. doi: 10.1146/annurev.nutr.19.1.91. [DOI] [PubMed] [Google Scholar]
  50. Slotboom D. J., Konings W. N., Lolkema J. S. Cysteine-scanning mutagenesis reveals a highly amphipathic, pore-lining membrane-spanning helix in the glutamate transporter GltT. J Biol Chem. 2001 Jan 8;276(14):10775–10781. doi: 10.1074/jbc.M011064200. [DOI] [PubMed] [Google Scholar]
  51. Stipani V., Cappello A. R., Daddabbo L., Natuzzi D., Miniero D. V., Stipani I., Palmieri F. The mitochondrial oxoglutarate carrier: cysteine-scanning mutagenesis of transmembrane domain IV and sensitivity of Cys mutants to sulfhydryl reagents. Biochemistry. 2001 Dec 25;40(51):15805–15810. doi: 10.1021/bi011616j. [DOI] [PubMed] [Google Scholar]
  52. Tamura N., Konishi S., Iwaki S., Kimura-Someya T., Nada S., Yamaguchi A. Complete cysteine-scanning mutagenesis and site-directed chemical modification of the Tn10-encoded metal-tetracycline/H+ antiporter. J Biol Chem. 2001 Feb 6;276(23):20330–20339. doi: 10.1074/jbc.M007993200. [DOI] [PubMed] [Google Scholar]
  53. Tse A., Brigle K., Taylor S. M., Moran R. G. Mutations in the reduced folate carrier gene which confer dominant resistance to 5,10-dideazatetrahydrofolate. J Biol Chem. 1998 Oct 2;273(40):25953–25960. doi: 10.1074/jbc.273.40.25953. [DOI] [PubMed] [Google Scholar]
  54. Whetstine Johnathan R., Flatley Robin M., Matherly Larry H. The human reduced folate carrier gene is ubiquitously and differentially expressed in normal human tissues: identification of seven non-coding exons and characterization of a novel promoter. Biochem J. 2002 Nov 1;367(Pt 3):629–640. doi: 10.1042/BJ20020512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Williams F. M., Flintoff W. F. Isolation of a human cDNA that complements a mutant hamster cell defective in methotrexate uptake. J Biol Chem. 1995 Feb 17;270(7):2987–2992. doi: 10.1074/jbc.270.7.2987. [DOI] [PubMed] [Google Scholar]
  56. Witt Teah L., Matherly Larry H. Identification of lysine-411 in the human reduced folate carrier as an important determinant of substrate selectivity and carrier function by systematic site-directed mutagenesis. Biochim Biophys Acta. 2002 Dec 23;1567(1-2):56–62. doi: 10.1016/s0005-2736(02)00583-7. [DOI] [PubMed] [Google Scholar]
  57. Wong S. C., McQuade R., Proefke S. A., Bhushan A., Matherly L. H. Human K562 transfectants expressing high levels of reduced folate carrier but exhibiting low transport activity. Biochem Pharmacol. 1997 Jan 24;53(2):199–206. doi: 10.1016/s0006-2952(96)00710-1. [DOI] [PubMed] [Google Scholar]
  58. Wong S. C., Proefke S. A., Bhushan A., Matherly L. H. Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J Biol Chem. 1995 Jul 21;270(29):17468–17475. doi: 10.1074/jbc.270.29.17468. [DOI] [PubMed] [Google Scholar]
  59. Wong S. C., Zhang L., Witt T. L., Proefke S. A., Bhushan A., Matherly L. H. Impaired membrane transport in methotrexate-resistant CCRF-CEM cells involves early translation termination and increased turnover of a mutant reduced folate carrier. J Biol Chem. 1999 Apr 9;274(15):10388–10394. doi: 10.1074/jbc.274.15.10388. [DOI] [PubMed] [Google Scholar]
  60. Yang Rui, Sowers Rebecca, Mazza BethAnne, Healey John H., Huvos Andrew, Grier Holcombe, Bernstein Mark, Beardsley G. Peter, Krailo Mark D., Devidas Meenakshi. Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clin Cancer Res. 2003 Feb;9(2):837–844. [PubMed] [Google Scholar]
  61. Zeng F. Y., Hopp A., Soldner A., Wess J. Use of a disulfide cross-linking strategy to study muscarinic receptor structure and mechanisms of activation. J Biol Chem. 1999 Jun 4;274(23):16629–16640. doi: 10.1074/jbc.274.23.16629. [DOI] [PubMed] [Google Scholar]
  62. Zhang L., Taub J. W., Williamson M., Wong S. C., Hukku B., Pullen J., Ravindranath Y., Matherly L. H. Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy. Clin Cancer Res. 1998 Sep;4(9):2169–2177. [PubMed] [Google Scholar]
  63. Zhao R., Assaraf Y. G., Goldman I. D. A mutated murine reduced folate carrier (RFC1) with increased affinity for folic acid, decreased affinity for methotrexate, and an obligatory anion requirement for transport function. J Biol Chem. 1998 Jul 24;273(30):19065–19071. doi: 10.1074/jbc.273.30.19065. [DOI] [PubMed] [Google Scholar]
  64. Zhao R., Assaraf Y. G., Goldman I. D. A reduced folate carrier mutation produces substrate-dependent alterations in carrier mobility in murine leukemia cells and methotrexate resistance with conservation of growth in 5-formyltetrahydrofolate. J Biol Chem. 1998 Apr 3;273(14):7873–7879. doi: 10.1074/jbc.273.14.7873. [DOI] [PubMed] [Google Scholar]
  65. Zhao R., Gao F., Wang P. J., Goldman I. D. Role of the amino acid 45 residue in reduced folate carrier function and ion-dependent transport as characterized by site-directed mutagenesis. Mol Pharmacol. 2000 Feb;57(2):317–323. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES