Abstract
Hepatocyte growth factor (HGF) causes endothelium-dependent vasodilation, but its relation to endothelial nitric oxide synthase (eNOS) activity remains to be elucidated. Treatment of bovine aortic endothelial cells with HGF increased eNOS activity within minutes, accompanied by an increase of activity-related site-specific phosphorylation of eNOS. The phosphorylation was completely abolished by pretreatment of the cells with a phosphoinositide 3-kinase (PI3K) inhibitor (wortmannin) and by transfection of dominant-negative Akt, and the enzyme activity was inhibited by wortmannin. In addition, eNOS activity and phosphorylation were abolished by pretreatment of the cells with an intracellular Ca(2+)-chelator, bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM), with a suppression of Akt phosphorylation. These results suggest that HGF stimulates eNOS activity by a PI3K/Akt-dependent phosphorylation in a Ca(2+)-sensitive manner in vascular endothelial cells.
Full Text
The Full Text of this article is available as a PDF (288.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brouet A., Sonveaux P., Dessy C., Balligand J. L., Feron O. Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem. 2001 Jun 25;276(35):32663–32669. doi: 10.1074/jbc.M101371200. [DOI] [PubMed] [Google Scholar]
- Derman M. P., Cunha M. J., Barros E. J., Nigam S. K., Cantley L. G. HGF-mediated chemotaxis and tubulogenesis require activation of the phosphatidylinositol 3-kinase. Am J Physiol. 1995 Jun;268(6 Pt 2):F1211–F1217. doi: 10.1152/ajprenal.1995.268.6.F1211. [DOI] [PubMed] [Google Scholar]
- Fischer R., Julsgart J., Berchtold M. W. High affinity calmodulin target sequence in the signalling molecule PI 3-kinase. FEBS Lett. 1998 Mar 20;425(1):175–177. doi: 10.1016/s0014-5793(98)00225-7. [DOI] [PubMed] [Google Scholar]
- Fulton D., Gratton J. P., Sessa W. C. Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough? J Pharmacol Exp Ther. 2001 Dec;299(3):818–824. [PubMed] [Google Scholar]
- Govers R., Rabelink T. J. Cellular regulation of endothelial nitric oxide synthase. Am J Physiol Renal Physiol. 2001 Feb;280(2):F193–F206. doi: 10.1152/ajprenal.2001.280.2.F193. [DOI] [PubMed] [Google Scholar]
- Grierson I., Heathcote L., Hiscott P., Hogg P., Briggs M., Hagan S. Hepatocyte growth factor/scatter factor in the eye. Prog Retin Eye Res. 2000 Nov;19(6):779–802. doi: 10.1016/s1350-9462(00)00015-x. [DOI] [PubMed] [Google Scholar]
- He H., Venema V. J., Gu X., Venema R. C., Marrero M. B., Caldwell R. B. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem. 1999 Aug 27;274(35):25130–25135. doi: 10.1074/jbc.274.35.25130. [DOI] [PubMed] [Google Scholar]
- Hisamoto K., Ohmichi M., Kurachi H., Hayakawa J., Kanda Y., Nishio Y., Adachi K., Tasaka K., Miyoshi E., Fujiwara N. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem. 2000 Oct 23;276(5):3459–3467. doi: 10.1074/jbc.M005036200. [DOI] [PubMed] [Google Scholar]
- Igarashi J., Bernier S. G., Michel T. Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase. differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. J Biol Chem. 2001 Jan 17;276(15):12420–12426. doi: 10.1074/jbc.M008375200. [DOI] [PubMed] [Google Scholar]
- Joyal J. L., Burks D. J., Pons S., Matter W. F., Vlahos C. J., White M. F., Sacks D. B. Calmodulin activates phosphatidylinositol 3-kinase. J Biol Chem. 1997 Nov 7;272(45):28183–28186. doi: 10.1074/jbc.272.45.28183. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Maejima Yasuhiro, Ueba Hiroto, Kuroki Masatoshi, Yasu Takanori, Hashimoto Shigemasa, Nabata Aoi, Kobayashi Nobuhiko, Ikeda Nahoko, Saito Muneyasu, Kawakami Masanobu. Src family kinases and nitric oxide production are required for hepatocyte growth factor-stimulated endothelial cell growth. Atherosclerosis. 2003 Mar;167(1):89–95. doi: 10.1016/s0021-9150(02)00384-2. [DOI] [PubMed] [Google Scholar]
- Maina F., Panté G., Helmbacher F., Andres R., Porthin A., Davies A. M., Ponzetto C., Klein R. Coupling Met to specific pathways results in distinct developmental outcomes. Mol Cell. 2001 Jun;7(6):1293–1306. doi: 10.1016/s1097-2765(01)00261-1. [DOI] [PubMed] [Google Scholar]
- Maulik Gautam, Shrikhande Amol, Kijima Takashi, Ma Patrick C., Morrison Paul T., Salgia Ravi. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev. 2002 Feb;13(1):41–59. doi: 10.1016/s1359-6101(01)00029-6. [DOI] [PubMed] [Google Scholar]
- Miyagawa Shigeru, Sawa Yoshiki, Taketani Satoshi, Kawaguchi Naomasa, Nakamura Toshikazu, Matsuura Nariaki, Matsuda Hikaru. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation. 2002 May 28;105(21):2556–2561. doi: 10.1161/01.cir.0000016722.37138.f2. [DOI] [PubMed] [Google Scholar]
- Montagnani M., Chen H., Barr V. A., Quon M. J. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem. 2001 Jun 11;276(32):30392–30398. doi: 10.1074/jbc.M103702200. [DOI] [PubMed] [Google Scholar]
- Morishita R., Aoki M., Nakamura S., Higaki J., Kaneda Y., Ogihara T. Gene therapy for cardiovascular disease using hepatocyte growth factor. Ann N Y Acad Sci. 2000 May;902:369–376. doi: 10.1111/j.1749-6632.2000.tb06340.x. [DOI] [PubMed] [Google Scholar]
- Murohara T., Asahara T., Silver M., Bauters C., Masuda H., Kalka C., Kearney M., Chen D., Symes J. F., Fishman M. C. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998 Jun 1;101(11):2567–2578. doi: 10.1172/JCI1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Métais C., Li J., Li J., Simons M., Sellke F. W. Effects of coronary artery disease on expression and microvascular response to VEGF. Am J Physiol. 1998 Oct;275(4 Pt 2):H1411–H1418. doi: 10.1152/ajpheart.1998.275.4.H1411. [DOI] [PubMed] [Google Scholar]
- Nakagami H., Morishita R., Yamamoto K., Taniyama Y., Aoki M., Matsumoto K., Nakamura T., Kaneda Y., Horiuchi M., Ogihara T. Mitogenic and antiapoptotic actions of hepatocyte growth factor through ERK, STAT3, and AKT in endothelial cells. Hypertension. 2001 Feb;37(2 Pt 2):581–586. doi: 10.1161/01.hyp.37.2.581. [DOI] [PubMed] [Google Scholar]
- Okano Y., Mizuno K., Osada S., Nakamura T., Nozawa Y. Tyrosine phosphorylation of phospholipase C gamma in c-met/HGF receptor-stimulated hepatocytes: comparison with HepG2 hepatocarcinoma cells. Biochem Biophys Res Commun. 1993 Feb 15;190(3):842–848. doi: 10.1006/bbrc.1993.1125. [DOI] [PubMed] [Google Scholar]
- Papapetropoulos A., García-Cardeña G., Madri J. A., Sessa W. C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest. 1997 Dec 15;100(12):3131–3139. doi: 10.1172/JCI119868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purdie Karin J., Whitley Guy St J., Johnstone Alan P., Cartwright Judith E. Hepatocyte growth factor-induced endothelial cell motility is mediated by the upregulation of inducible nitric oxide synthase expression. Cardiovasc Res. 2002 Jun;54(3):659–668. doi: 10.1016/s0008-6363(02)00255-9. [DOI] [PubMed] [Google Scholar]
- Rosen E. M., Lamszus K., Laterra J., Polverini P. J., Rubin J. S., Goldberg I. D. HGF/SF in angiogenesis. Ciba Found Symp. 1997;212:215–229. doi: 10.1002/9780470515457.ch14. [DOI] [PubMed] [Google Scholar]
- Stuart K. A., Riordan S. M., Lidder S., Crostella L., Williams R., Skouteris G. G. Hepatocyte growth factor/scatter factor-induced intracellular signalling. Int J Exp Pathol. 2000 Feb;81(1):17–30. doi: 10.1046/j.1365-2613.2000.00138.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Belle E., Witzenbichler B., Chen D., Silver M., Chang L., Schwall R., Isner J. M. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation. 1998 Feb 3;97(4):381–390. doi: 10.1161/01.cir.97.4.381. [DOI] [PubMed] [Google Scholar]
- Williams I. L., Wheatcroft S. B., Shah A. M., Kearney M. T. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes Relat Metab Disord. 2002 Jun;26(6):754–764. doi: 10.1038/sj.ijo.0801995. [DOI] [PubMed] [Google Scholar]
- Xin X., Yang S., Ingle G., Zlot C., Rangell L., Kowalski J., Schwall R., Ferrara N., Gerritsen M. E. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol. 2001 Mar;158(3):1111–1120. doi: 10.1016/S0002-9440(10)64058-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yasuda S., Noguchi T., Gohda M., Arai T., Tsutsui N., Matsuda T., Nonogi H. Single low-dose administration of human recombinant hepatocyte growth factor attenuates intimal hyperplasia in a balloon-injured rabbit iliac artery model. Circulation. 2000 May 30;101(21):2546–2549. doi: 10.1161/01.cir.101.21.2546. [DOI] [PubMed] [Google Scholar]
- Zachary I. Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol. 2001 Jun;280(6):C1375–C1386. doi: 10.1152/ajpcell.2001.280.6.C1375. [DOI] [PubMed] [Google Scholar]