Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):219–228. doi: 10.1042/BJ20030272

Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport.

Marius Brouwer 1, Thea Hoexum Brouwer 1, Walter Grater 1, Nancy Brown-Peterson 1
PMCID: PMC1223582  PMID: 12769817

Abstract

The blue crab, Callinectes sapidus, which uses the copper-dependent protein haemocyanin for oxygen transport, lacks the ubiquitous cytosolic copper-dependent enzyme copper/zinc superoxide dismutase (Cu,ZnSOD) as evidenced by undetectable levels of Cu,ZnSOD activity, protein and mRNA in the hepatopancreas (the site of haemocyanin synthesis) and gills. Instead, the crab has an unusual cytosolic manganese SOD (cytMnSOD), which is retained in the cytosol, because it lacks a mitochondrial transit peptide. A second familiar MnSOD is present in the mitochondria (mtMnSOD). This unique phenomenon occurs in all Crustacea that use haemocyanin for oxygen transport. Molecular phylogeny analysis suggests the MnSOD gene duplication is as old as the origin of the arthropod phylum. cytMnSOD activity in the hepatopancreas changes during the moulting cycle of the crab. Activity is high in intermoult crabs and non-detectable in postmoult papershell crabs. mtMnSOD is present in all stages of the moulting cycle. Despite the lack of cytCu,ZnSOD, crabs have an extracellular Cu,ZnSOD (ecCu,ZnSOD) that is produced by haemocytes, and is part of a large, approx. 160 kDa, covalently-linked protein complex. ecCu,ZnSOD is absent from the hepatopancreas of intermoult crabs, but appears in this tissue at premoult. However, no ecCu,ZnSOD mRNA can be detected, suggesting that the protein is recruited from the haemolymph. Screening of different taxa of the arthropod phylum for Cu,ZnSOD activity shows that those crustaceans that use haemoglobin for oxygen transport have retained cytCu,ZnSOD. It appears, therefore, that the replacement of cytCu,ZnSOD with cytMnSOD is part of an adaptive response to the dynamic, haemocyanin-linked, fluctuations in copper metabolism that occur during the moulting cycle of the crab.

Full Text

The Full Text of this article is available as a PDF (308.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Autor A. P. Biosynthesis of mitochondrial manganese superoxide dismutase in saccharomyces cerevisiae. Precursor form of mitochondrial superoxide dismutase made in the cytoplasm. J Biol Chem. 1982 Mar 10;257(5):2713–2718. [PubMed] [Google Scholar]
  3. Banks G. K., Robinson A. S., Kwiatowski J., Ayala F. J., Scott M. J., Kriticou D. A second superoxide dismutase gene in the medfly, Ceratitis capitata. Genetics. 1995 Jun;140(2):697–702. doi: 10.1093/genetics/140.2.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  5. Bordo D., Djinović K., Bolognesi M. Conserved patterns in the Cu,Zn superoxide dismutase family. J Mol Biol. 1994 May 6;238(3):366–386. doi: 10.1006/jmbi.1994.1298. [DOI] [PubMed] [Google Scholar]
  6. Borgstahl G. E., Parge H. E., Hickey M. J., Beyer W. F., Jr, Hallewell R. A., Tainer J. A. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992 Oct 2;71(1):107–118. doi: 10.1016/0092-8674(92)90270-m. [DOI] [PubMed] [Google Scholar]
  7. Brouwer M., Brouwer T. H. Biochemical defense mechanisms against copper-induced oxidative damage in the blue crab, Callinectes sapidus. Arch Biochem Biophys. 1998 Mar 15;351(2):257–264. doi: 10.1006/abbi.1997.0568. [DOI] [PubMed] [Google Scholar]
  8. Brouwer M., Brouwer T. H., Grater W., Enghild J. J., Thogersen I. B. The paradigm that all oxygen-respiring eukaryotes have cytosolic CuZn-superoxide dismutase and that Mn-superoxide dismutase is localized to the mitochondria does not apply to a large group of marine arthropods. Biochemistry. 1997 Oct 28;36(43):13381–13388. doi: 10.1021/bi971052c. [DOI] [PubMed] [Google Scholar]
  9. Brouwer M., Enghild J., Hoexum-Brouwer T., Thogersen I., Truncali A. Primary structure and tissue-specific expression of blue crab (Callinectes sapidus) metallothionein isoforms. Biochem J. 1995 Oct 15;311(Pt 2):617–622. doi: 10.1042/bj3110617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brouwer Marius, Syring Rachel, Hoexum Brouwer Thea. Role of a copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin. J Inorg Biochem. 2002 Jan 15;88(2):228–239. doi: 10.1016/s0162-0134(01)00381-6. [DOI] [PubMed] [Google Scholar]
  11. Burmester T. Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B. 2002 Feb;172(2):95–107. doi: 10.1007/s00360-001-0247-7. [DOI] [PubMed] [Google Scholar]
  12. Culotta V. C., Joh H. D., Lin S. J., Slekar K. H., Strain J. A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem. 1995 Dec 15;270(50):29991–29997. doi: 10.1074/jbc.270.50.29991. [DOI] [PubMed] [Google Scholar]
  13. Fahrenbach W. H. The cyanoblast: hemocyanin formation in Limulus polyphemus. J Cell Biol. 1970 Feb;44(2):445–453. doi: 10.1083/jcb.44.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fitch W. M., Ayala F. J. The superoxide dismutase molecular clock revisited. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6802–6807. doi: 10.1073/pnas.91.15.6802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Getzoff E. D., Tainer J. A., Stempien M. M., Bell G. I., Hallewell R. A. Evolution of CuZn superoxide dismutase and the Greek key beta-barrel structural motif. Proteins. 1989;5(4):322–336. doi: 10.1002/prot.340050408. [DOI] [PubMed] [Google Scholar]
  16. Harris E. D. Copper as a cofactor and regulator of copper,zinc superoxide dismutase. J Nutr. 1992 Mar;122(3 Suppl):636–640. doi: 10.1093/jn/122.suppl_3.636. [DOI] [PubMed] [Google Scholar]
  17. Hjalmarsson K., Marklund S. L., Engström A., Edlund T. Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6340–6344. doi: 10.1073/pnas.84.18.6340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johansson M. W., Holmblad T., Thörnqvist P. O., Cammarata M., Parrinello N., Söderhäll K. A cell-surface superoxide dismutase is a binding protein for peroxinectin, a cell-adhesive peroxidase in crayfish. J Cell Sci. 1999 Mar;112(Pt 6):917–925. doi: 10.1242/jcs.112.6.917. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Manning A. M., Trotman C. N., Tate W. P. Evolution of a polymeric globin in the brine shrimp Artemia. Nature. 1990 Dec 13;348(6302):653–656. doi: 10.1038/348653a0. [DOI] [PubMed] [Google Scholar]
  21. Okado-Matsumoto A., Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem. 2001 Aug 15;276(42):38388–38393. doi: 10.1074/jbc.M105395200. [DOI] [PubMed] [Google Scholar]
  22. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schatz G., Dobberstein B. Common principles of protein translocation across membranes. Science. 1996 Mar 15;271(5255):1519–1526. doi: 10.1126/science.271.5255.1519. [DOI] [PubMed] [Google Scholar]
  25. Smith M. W., Doolittle R. F. A comparison of evolutionary rates of the two major kinds of superoxide dismutase. J Mol Evol. 1992 Feb;34(2):175–184. doi: 10.1007/BF00182394. [DOI] [PubMed] [Google Scholar]
  26. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  27. Spitz D. R., Oberley L. W. An assay for superoxide dismutase activity in mammalian tissue homogenates. Anal Biochem. 1989 May 15;179(1):8–18. doi: 10.1016/0003-2697(89)90192-9. [DOI] [PubMed] [Google Scholar]
  28. Steinkühler C., Sapora O., Carrì M. T., Nagel W., Marcocci L., Ciriolo M. R., Weser U., Rotilio G. Increase of Cu,Zn-superoxide dismutase activity during differentiation of human K562 cells involves activation by copper of a constantly expressed copper-deficient protein. J Biol Chem. 1991 Dec 25;266(36):24580–24587. [PubMed] [Google Scholar]
  29. Sturtz L. A., Diekert K., Jensen L. T., Lill R., Culotta V. C. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem. 2001 Aug 10;276(41):38084–38089. doi: 10.1074/jbc.M105296200. [DOI] [PubMed] [Google Scholar]
  30. Syring R. A., Hoexum Brouwer T., Brouwer M. Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue crab Callinectes sapidus. Comp Biochem Physiol C Toxicol Pharmacol. 2000 Mar;125(3):325–332. doi: 10.1016/s0742-8413(99)00114-0. [DOI] [PubMed] [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Valentine J. S., Gralla E. B. Delivering copper inside yeast and human cells. Science. 1997 Oct 31;278(5339):817–818. doi: 10.1126/science.278.5339.817. [DOI] [PubMed] [Google Scholar]
  33. Valentine J. W. Late Precambrian bilaterians: grades and clades. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6751–6757. doi: 10.1073/pnas.91.15.6751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Voit R., Feldmaier-Fuchs G. Arthropod hemocyanins. Molecular cloning and sequencing of cDNAs encoding the tarantula hemocyanin subunits a and e. J Biol Chem. 1990 Nov 15;265(32):19447–19452. [PubMed] [Google Scholar]
  35. Voit R., Feldmaier-Fuchs G., Schweikardt T., Decker H., Burmester T. Complete sequence of the 24-mer hemocyanin of the tarantula Eurypelma californicum. Structure and intramolecular evolution of the subunits. J Biol Chem. 2000 Dec 15;275(50):39339–39344. doi: 10.1074/jbc.M005442200. [DOI] [PubMed] [Google Scholar]
  36. Wada H., Satoh N. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1801–1804. doi: 10.1073/pnas.91.5.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wei J. P., Srinivasan C., Han H., Valentine J. S., Gralla E. B. Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism. J Biol Chem. 2001 Oct 1;276(48):44798–44803. doi: 10.1074/jbc.M104708200. [DOI] [PubMed] [Google Scholar]
  38. Winterbourn C. C. Superoxide as an intracellular radical sink. Free Radic Biol Med. 1993 Jan;14(1):85–90. doi: 10.1016/0891-5849(93)90512-s. [DOI] [PubMed] [Google Scholar]
  39. Wood E. J., Bonaventura J. Identification of Limulus polyphemus haemocyanin messenger RNA. Biochem J. 1981 May 15;196(2):653–656. doi: 10.1042/bj1960653. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES