Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):239–246. doi: 10.1042/BJ20030059

Cobalamin (vitamin B12)-deficiency-induced changes in the proteome of rat cerebrospinal fluid.

Elisabetta Gianazza 1, Daniela Veber 1, Ivano Eberini 1, Francesca R Buccellato 1, Elena Mutti 1, Luigi Sironi 1, Giuseppe Scalabrino 1
PMCID: PMC1223583  PMID: 12769818

Abstract

We studied the changes in the proteome of CSF (cerebrospinal fluid) in two animal models of Cbl (cobalamin) deficiency: TGX (totally gastrectomized) rats and rats fed a Cbl-D (Cbl-deficient) diet. Two-dimensional PAGE was used to detect qualitative and quantitative variations in proteins in the CSF samples. The peak increase in total CSF protein concentration was observed 4 months after TG (total gastrectomy) and after 6 months of eating a Cbl-D diet. There is a specific increase 4 months after TG in the spots corresponding to alpha1-antitrypsin and the de novo presence of thiostatin and haptoglobin beta. Cbl-replacement treatment in 4-month-TGX rats corrected these alterations in the CSF proteome. However, most of the CSF proteome alterations attenuated in Cbl-untreated 8-month-TGX rats and in rats fed a Cbl-D diet for 16 months. Transthyretin concentration varied slightly in the CSF of both types of Cbl-D rat, whereas the relative abundance of prostaglandin D synthase rose sharply in the CSF of the rats fed a Cbl-D diet for 16 months. We have demonstrated previously that the histological and ultrastructural CNS (central nervous system) damage in both types of Cbl-D rat appears within 2-3 months of Cbl deficiency, and thus appears to precede the alterations in the CSF proteome. The CSF proteome patterns of rats in which phlogosis was induced in or outside the CNS are quite different from those of the CSF of Cbl-D rats. All these findings demonstrate that the alterations in the CSF proteome of Cbl-D rats are specifically linked to Cbl deficiency.

Full Text

The Full Text of this article is available as a PDF (291.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton B. E. The biological effects of interleukin 6. Med Res Rev. 1996 Jan;16(1):87–109. doi: 10.1002/(SICI)1098-1128(199601)16:1<87::AID-MED3>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  2. Beuckmann C. T., Lazarus M., Gerashchenko D., Mizoguchi A., Nomura S., Mohri I., Uesugi A., Kaneko T., Mizuno N., Hayaishi O. Cellular localization of lipocalin-type prostaglandin D synthase (beta-trace) in the central nervous system of the adult rat. J Comp Neurol. 2000 Dec 4;428(1):62–78. doi: 10.1002/1096-9861(20001204)428:1<62::aid-cne6>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Buccellato F. R., Miloso M., Braga M., Nicolini G., Morabito A., Pravettoni G., Tredici G., Scalabrino G. Myelinolytic lesions in spinal cord of cobalamin-deficient rats are TNF-alpha-mediated. FASEB J. 1999 Feb;13(2):297–304. doi: 10.1096/fasebj.13.2.297. [DOI] [PubMed] [Google Scholar]
  5. Cairo Gaetano, Ronchi Raffaella, Buccellato Francesca R., Veber Daniela, Santambrogio Paolo, Scalabrino Giuseppe. Regulation of the ferritin H subunit by vitamin B12 (cobalamin) in rat spinal cord. J Neurosci Res. 2002 Jul 1;69(1):117–124. doi: 10.1002/jnr.10267. [DOI] [PubMed] [Google Scholar]
  6. Celis J. E., Rasmussen H. H., Leffers H., Madsen P., Honoré B., Gesser B., Dejgaard K., Vandekerckhove J. Human cellular protein patterns and their link to genome DNA sequence data: usefulness of two-dimensional gel electrophoresis and microsequencing. FASEB J. 1991 May;5(8):2200–2208. doi: 10.1096/fasebj.5.8.1827083. [DOI] [PubMed] [Google Scholar]
  7. Davidsson P., Paulson L., Hesse C., Blennow K., Nilsson C. L. Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry. Proteomics. 2001 Mar;1(3):444–452. doi: 10.1002/1615-9861(200103)1:3<444::AID-PROT444>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  8. Dickson P. W., Howlett G. J., Schreiber G. Rat transthyretin (prealbumin). Molecular cloning, nucleotide sequence, and gene expression in liver and brain. J Biol Chem. 1985 Jul 5;260(13):8214–8219. [PubMed] [Google Scholar]
  9. Fenech M. The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat Res. 2001 Apr 18;475(1-2):57–67. doi: 10.1016/s0027-5107(01)00079-3. [DOI] [PubMed] [Google Scholar]
  10. Fountoulakis M. Proteomics: current technologies and applications in neurological disorders and toxicology. Amino Acids. 2001 Dec;21(4):363–381. doi: 10.1007/s007260170002. [DOI] [PubMed] [Google Scholar]
  11. Garrels J. I. The QUEST system for quantitative analysis of two-dimensional gels. J Biol Chem. 1989 Mar 25;264(9):5269–5282. [PubMed] [Google Scholar]
  12. Giacomelli S., Leone M. G., Grima J., Silvestrini B., Cheng C. Y. Astrocytes synthesize and secrete prostaglandin D synthetase in vitro. Biochim Biophys Acta. 1996 Feb 29;1310(3):269–276. doi: 10.1016/0167-4889(95)00182-4. [DOI] [PubMed] [Google Scholar]
  13. Gianazza Elisabetta, Eberini Ivano, Villa Pia, Fratelli Maddalena, Pinna Christian, Wait Robin, Gemeiner Manfred, Miller Ingrid. Monitoring the effects of drug treatment in rat models of disease by serum protein analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 May 5;771(1-2):107–130. doi: 10.1016/s0378-4347(01)00562-x. [DOI] [PubMed] [Google Scholar]
  14. Grant S. G., Blackstock W. P. Proteomics in neuroscience: from protein to network. J Neurosci. 2001 Nov 1;21(21):8315–8318. doi: 10.1523/JNEUROSCI.21-21-08315.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hauss-Wegrzyniak B., Lukovic L., Bigaud M., Stoeckel M. E. Brain inflammatory response induced by intracerebroventricular infusion of lipopolysaccharide: an immunohistochemical study. Brain Res. 1998 Jun 1;794(2):211–224. doi: 10.1016/s0006-8993(98)00227-3. [DOI] [PubMed] [Google Scholar]
  16. Herbert B. R., Harry J. L., Packer N. H., Gooley A. A., Pedersen S. K., Williams K. L. What place for polyacrylamide in proteomics? Trends Biotechnol. 2001 Oct;19(10 Suppl):S3–S9. doi: 10.1016/S0167-7799(01)01796-6. [DOI] [PubMed] [Google Scholar]
  17. Hiraoka A., Arato T., Tominaga I., Eguchi N., Oda H., Urade Y. Analysis of low-molecular-mass proteins in cerebrospinal fluid by sodium dodecyl sulfate capillary gel electrophoresis. J Chromatogr B Biomed Sci Appl. 1997 Sep 12;697(1-2):141–147. doi: 10.1016/s0378-4347(97)00326-5. [DOI] [PubMed] [Google Scholar]
  18. Mase M., Yamada K., Iwata A., Matsumoto T., Seiki K., Oda H., Urade Y. Acute and transient increase of lipocalin-type prostaglandin D synthase (beta-trace) level in cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage. Neurosci Lett. 1999 Aug 6;270(3):188–190. doi: 10.1016/s0304-3940(99)00494-2. [DOI] [PubMed] [Google Scholar]
  19. Miller Joshua W. Vitamin B12 deficiency, tumor necrosis factor-alpha, and epidermal growth factor: a novel function for vitamin B12? Nutr Rev. 2002 May;60(5 Pt 1):142–144. doi: 10.1301/00296640260093805. [DOI] [PubMed] [Google Scholar]
  20. Minghetti L., Levi G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol. 1998 Jan;54(1):99–125. doi: 10.1016/s0301-0082(97)00052-x. [DOI] [PubMed] [Google Scholar]
  21. Pandey A., Mann M. Proteomics to study genes and genomes. Nature. 2000 Jun 15;405(6788):837–846. doi: 10.1038/35015709. [DOI] [PubMed] [Google Scholar]
  22. Peitsch M. C., Boguski M. S. The first lipocalin with enzymatic activity. Trends Biochem Sci. 1991 Oct;16(10):363–363. doi: 10.1016/0968-0004(91)90149-p. [DOI] [PubMed] [Google Scholar]
  23. Rohlff C. Proteomics in molecular medicine: applications in central nervous systems disorders. Electrophoresis. 2000 Apr;21(6):1227–1234. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1227::AID-ELPS1227>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  24. Roos D. Neurological complications in patients with impaired vitamin B12 absorption following partial gastrectomy. Acta Neurol Scand Suppl. 1978;69:1–77. [PubMed] [Google Scholar]
  25. Saso L., Silvestrini B., Cheng C. Y. The use of high-performance electrophoresis chromatography for the micropurification of cerebrospinal fluid proteins in the rat. Anal Biochem. 1993 Aug 1;212(2):315–324. doi: 10.1006/abio.1993.1336. [DOI] [PubMed] [Google Scholar]
  26. Scalabrino G., Buccellato F. R., Tredici G., Morabito A., Lorenzini E. C., Allen R. H., Lindenbaum J. Enhanced levels of biochemical markers for cobalamin deficiency in totally gastrectomized rats: uncoupling of the enhancement from the severity of spongy vacuolation in spinal cord. Exp Neurol. 1997 Apr;144(2):258–265. doi: 10.1006/exnr.1996.6376. [DOI] [PubMed] [Google Scholar]
  27. Scalabrino G., Monzio-Compagnoni B., Ferioli M. E., Lorenzini E. C., Chiodini E., Candiani R. Subacute combined degeneration and induction of ornithine decarboxylase in spinal cords of totally gastrectomized rats. Lab Invest. 1990 Mar;62(3):297–304. [PubMed] [Google Scholar]
  28. Scalabrino G., Nicolini G., Buccellato F. R., Peracchi M., Tredici G., Manfridi A., Pravettoni G. Epidermal growth factor as a local mediator of the neurotrophic action of vitamin B(12) (cobalamin) in the rat central nervous system. FASEB J. 1999 Nov;13(14):2083–2090. doi: 10.1096/fasebj.13.14.2083. [DOI] [PubMed] [Google Scholar]
  29. Scalabrino G. Subacute combined degeneration one century later. The neurotrophic action of cobalamin (vitamin B12) revisited. J Neuropathol Exp Neurol. 2001 Feb;60(2):109–120. doi: 10.1093/jnen/60.2.109. [DOI] [PubMed] [Google Scholar]
  30. Scalabrino G., Tredici G., Buccellato F. R., Manfridi A. Further evidence for the involvement of epidermal growth factor in the signaling pathway of vitamin B12 (cobalamin) in the rat central nervous system. J Neuropathol Exp Neurol. 2000 Sep;59(9):808–814. doi: 10.1093/jnen/59.9.808. [DOI] [PubMed] [Google Scholar]
  31. Scalabrino Giuseppe, Corsi M. M., Veber D., Buccellato F. R., Pravettoni G., Manfridi A., Magni P. Cobalamin (vitamin B(12)) positively regulates interleukin-6 levels in rat cerebrospinal fluid. J Neuroimmunol. 2002 Jun;127(1-2):37–43. doi: 10.1016/s0165-5728(02)00095-4. [DOI] [PubMed] [Google Scholar]
  32. Schreiber Gerhard. The evolution of transthyretin synthesis in the choroid plexus. Clin Chem Lab Med. 2002 Dec;40(12):1200–1210. doi: 10.1515/CCLM.2002.210. [DOI] [PubMed] [Google Scholar]
  33. Shimizu T., Wolfe L. S. Arachidonic acid cascade and signal transduction. J Neurochem. 1990 Jul;55(1):1–15. doi: 10.1111/j.1471-4159.1990.tb08813.x. [DOI] [PubMed] [Google Scholar]
  34. Sundelin J., Melhus H., Das S., Eriksson U., Lind P., Trägårdh L., Peterson P. A., Rask L. The primary structure of rabbit and rat prealbumin and a comparison with the tertiary structure of human prealbumin. J Biol Chem. 1985 May 25;260(10):6481–6487. [PubMed] [Google Scholar]
  35. Tredici G., Buccellato F. R., Cavaletti G., Scalabrino G. Subacute combined degeneration in totally gastrectomized rats: an ultrastructural study. J Submicrosc Cytol Pathol. 1998 Jan;30(1):165–173. [PubMed] [Google Scholar]
  36. Tumani H., Reiber H., Nau R., Prange H. W., Kauffmann K., Mäder M., Felgenhauer K. Beta-trace protein concentration in cerebrospinal fluid is decreased in patients with bacterial meningitis. Neurosci Lett. 1998 Feb 6;242(1):5–8. doi: 10.1016/s0304-3940(98)00021-4. [DOI] [PubMed] [Google Scholar]
  37. Urade Y., Hayaishi O. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta. 2000 Oct 18;1482(1-2):259–271. doi: 10.1016/s0167-4838(00)00161-8. [DOI] [PubMed] [Google Scholar]
  38. Urade Y., Hayaishi O. Prostaglandin D synthase: structure and function. Vitam Horm. 2000;58:89–120. doi: 10.1016/s0083-6729(00)58022-4. [DOI] [PubMed] [Google Scholar]
  39. Urade Y., Tanaka T., Eguchi N., Kikuchi M., Kimura H., Toh H., Hayaishi O. Structural and functional significance of cysteine residues of glutathione-independent prostaglandin D synthase. Identification of Cys65 as an essential thiol. J Biol Chem. 1995 Jan 20;270(3):1422–1428. doi: 10.1074/jbc.270.3.1422. [DOI] [PubMed] [Google Scholar]
  40. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol. 1990;8:253–278. doi: 10.1146/annurev.iy.08.040190.001345. [DOI] [PubMed] [Google Scholar]
  41. Vanegas H., Schaible H. G. Prostaglandins and cyclooxygenases [correction of cycloxygenases] in the spinal cord. Prog Neurobiol. 2001 Jul;64(4):327–363. doi: 10.1016/s0301-0082(00)00063-0. [DOI] [PubMed] [Google Scholar]
  42. Wait R., Gianazza E., Eberini I., Sironi L., Dunn M. J., Gemeiner M., Miller I. Proteins of rat serum, urine, and cerebrospinal fluid: VI. Further protein identifications and interstrain comparison. Electrophoresis. 2001 Aug;22(14):3043–3052. doi: 10.1002/1522-2683(200108)22:14<3043::AID-ELPS3043>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  43. Wojtczak A. Crystal structure of rat transthyretin at 2.5 A resolution: first report on a unique tetrameric structure. Acta Biochim Pol. 1997;44(3):505–517. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES