Abstract
The signal-recognition particle (SRP) of one of the most acidophilic and hyperthermophilic archaeal cells, Acidianus ambivalens, and its putative receptor component, FtsY (prokaryotic SRP receptor), were investigated in detail. A. ambivalens Ffh (fifty-four-homologous protein) was shown to be a soluble protein with strong affinity to membranes. In its membrane-residing form, Ffh was extracted from plasma membranes with chaotropic agents like urea, but not with agents diminishing electrostatic interactions. Using unilamellar tetraether phospholipid vesicles, both Ffh and FtsY associate independently from each other in the absence of other factors, suggesting an equilibrium of soluble and membrane-bound protein forms under in vivo conditions. The Ffh protein precipitated from cytosolic cell supernatants with anti-Ffh antibodies, together with an 7 S-alike SRP-RNA, suggesting a stable core ribonucleoprotein composed of both components under native conditions. The SRP RNA of A. ambivalens depicted a size of about 309 nucleotides like the SRP RNA of the related organism Sulfolobus acidocaldarius. A stable heterodimeric complex composed of Ffh and FtsY was absent in cytosolic supernatants, indicating a transiently formed complex during archaeal SRP targeting. The FtsY protein precipitated in cytosolic supernatants with anti-FtsY antisera as a homomeric protein lacking accessory protein components. However, under in vitro conditions, recombinantly generated Ffh and FtsY associate in a nucleotide-independent manner, supporting a structural receptor model with two interacting apoproteins.
Full Text
The Full Text of this article is available as a PDF (239.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhuiyan S. H., Gowda K., Hotokezaka H., Zwieb C. Assembly of archaeal signal recognition particle from recombinant components. Nucleic Acids Res. 2000 Mar 15;28(6):1365–1373. doi: 10.1093/nar/28.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connolly T., Gilmore R. GTP hydrolysis by complexes of the signal recognition particle and the signal recognition particle receptor. J Cell Biol. 1993 Nov;123(4):799–807. doi: 10.1083/jcb.123.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connolly T., Gilmore R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell. 1989 May 19;57(4):599–610. doi: 10.1016/0092-8674(89)90129-3. [DOI] [PubMed] [Google Scholar]
- Connolly T., Rapiejko P. J., Gilmore R. Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science. 1991 May 24;252(5009):1171–1173. doi: 10.1126/science.252.5009.1171. [DOI] [PubMed] [Google Scholar]
- Diener J. L., Wilson C. Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle. Biochemistry. 2000 Oct 24;39(42):12862–12874. doi: 10.1021/bi001180s. [DOI] [PubMed] [Google Scholar]
- Eichler J., Moll R. The signal recognition particle of Archaea. Trends Microbiol. 2001 Mar;9(3):130–136. doi: 10.1016/s0966-842x(01)01954-0. [DOI] [PubMed] [Google Scholar]
- Engler-Blum G., Meier M., Frank J., Müller G. A. Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem. 1993 May 1;210(2):235–244. doi: 10.1006/abio.1993.1189. [DOI] [PubMed] [Google Scholar]
- Hainzl Tobias, Huang Shenghua, Sauer-Eriksson A. Elisabeth. Structure of the SRP19 RNA complex and implications for signal recognition particle assembly. Nature. 2002 Jun 5;417(6890):767–771. doi: 10.1038/nature00768. [DOI] [PubMed] [Google Scholar]
- Jacobson M. R., Pederson T. Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7981–7986. doi: 10.1073/pnas.95.14.7981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaine B. P. Structure of the archaebacterial 7S RNA molecule. Mol Gen Genet. 1990 May;221(3):315–321. doi: 10.1007/BF00259394. [DOI] [PubMed] [Google Scholar]
- Komatsu H., Chong P. L. Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochemistry. 1998 Jan 6;37(1):107–115. doi: 10.1021/bi972163e. [DOI] [PubMed] [Google Scholar]
- Lütcke H. Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. Eur J Biochem. 1995 Mar 15;228(3):531–550. doi: 10.1111/j.1432-1033.1995.tb20293.x. [DOI] [PubMed] [Google Scholar]
- Maeshima H., Okuno E., Aimi T., Morinaga T., Itoh T. An archaeal protein homologous to mammalian SRP54 and bacterial Ffh recognizes a highly conserved region of SRP RNA. FEBS Lett. 2001 Nov 2;507(3):336–340. doi: 10.1016/s0014-5793(01)02996-9. [DOI] [PubMed] [Google Scholar]
- Millman J. S., Andrews D. W. Switching the model: a concerted mechanism for GTPases in protein targeting. Cell. 1997 May 30;89(5):673–676. doi: 10.1016/s0092-8674(00)80248-2. [DOI] [PubMed] [Google Scholar]
- Moll R., Schmidtke S., Petersen A., Schäfer G. The signal recognition particle receptor alpha subunit of the hyperthermophilic archaeon Acidianus ambivalens exhibits an intrinsic GTP-hydrolyzing activity. Biochim Biophys Acta. 1997 Apr 17;1335(1-2):218–230. doi: 10.1016/s0304-4165(96)00141-9. [DOI] [PubMed] [Google Scholar]
- Moll R., Schmidtke S., Schäfer G. Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea. Eur J Biochem. 1999 Jan;259(1-2):441–448. doi: 10.1046/j.1432-1327.1999.00065.x. [DOI] [PubMed] [Google Scholar]
- Montoya G., Kaat K., Moll R., Schäfer G., Sinning I. The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex. Structure. 2000 May 15;8(5):515–525. doi: 10.1016/s0969-2126(00)00131-3. [DOI] [PubMed] [Google Scholar]
- Montoya G., Svensson C., Luirink J., Sinning I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature. 1997 Jan 23;385(6614):365–368. doi: 10.1038/385365a0. [DOI] [PubMed] [Google Scholar]
- Moser C., Mol O., Goody R. S., Sinning I. The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11339–11344. doi: 10.1073/pnas.94.21.11339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura K., Yahagi S., Yamazaki T., Yamane K. Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem. 1999 May 7;274(19):13569–13576. doi: 10.1074/jbc.274.19.13569. [DOI] [PubMed] [Google Scholar]
- Politz J. C., Yarovoi S., Kilroy S. M., Gowda K., Zwieb C., Pederson T. Signal recognition particle components in the nucleolus. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):55–60. doi: 10.1073/pnas.97.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powers T., Walter P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science. 1995 Sep 8;269(5229):1422–1424. doi: 10.1126/science.7660124. [DOI] [PubMed] [Google Scholar]
- Rapiejko P. J., Gilmore R. Empty site forms of the SRP54 and SR alpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell. 1997 May 30;89(5):703–713. doi: 10.1016/s0092-8674(00)80253-6. [DOI] [PubMed] [Google Scholar]
- Rose R. Wesley, Pohlschröder Mechthild. In vivo analysis of an essential archaeal signal recognition particle in its native host. J Bacteriol. 2002 Jun;184(12):3260–3267. doi: 10.1128/JB.184.12.3260-3267.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitz G. G., Walter T., Seibl R., Kessler C. Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin by tailing with terminal transferase. Anal Biochem. 1991 Jan;192(1):222–231. doi: 10.1016/0003-2697(91)90212-c. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Sensen C. W., Klenk H. P., Singh R. K., Allard G., Chan C. C., Liu Q. Y., Penny S. L., Young F., Schenk M. E., Gaasterland T. Organizational characteristics and information content of an archaeal genome: 156 kb of sequence from Sulfolobus solfataricus P2. Mol Microbiol. 1996 Oct;22(1):175–191. doi: 10.1111/j.1365-2958.1996.tb02666.x. [DOI] [PubMed] [Google Scholar]
- Stroud R. M., Walter P. Signal sequence recognition and protein targeting. Curr Opin Struct Biol. 1999 Dec;9(6):754–759. doi: 10.1016/s0959-440x(99)00040-8. [DOI] [PubMed] [Google Scholar]
- Tozik Irit, Huang Qiaojia, Zwieb Christian, Eichler Jerry. Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii. Nucleic Acids Res. 2002 Oct 1;30(19):4166–4175. doi: 10.1093/nar/gkf548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Leeuw E., te Kaat K., Moser C., Menestrina G., Demel R., de Kruijff B., Oudega B., Luirink J., Sinning I. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J. 2000 Feb 15;19(4):531–541. doi: 10.1093/emboj/19.4.531. [DOI] [PMC free article] [PubMed] [Google Scholar]