Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):269–280. doi: 10.1042/BJ20021778

Requirements for distinct steps of phospholipase Cgamma2 regulation, membrane-raft-dependent targeting and subsequent enzyme activation in B-cell signalling.

Rosie Rodriguez 1, Miho Matsuda 1, Amy Storey 1, Matilda Katan 1
PMCID: PMC1223588  PMID: 12780340

Abstract

Studies of PLCgamma (phospholipase Cgamma) have identified a number of regulatory components required for signalling; however, molecular mechanisms and the relationship between events leading to translocation and an increase of substrate hydrolysis have not been well defined. The addition of a membrane-targeting tag to many signal transducers results in constitutive activation, suggesting that these processes could be closely linked and difficult to dissect. The present study of PLCgamma2 regulation by cross-linking of the BCR (B-cell antigen receptor) or H2O2 stress in DT40 B-cells, demonstrated that the membrane targeting is a separate step from further changes that result in enzyme activation and substrate hydrolysis. Furthermore, we have defined the roles of different domains of PLCgamma2 and, using a panel of cell lines deficient in components linked to PLCgamma2 regulation, the involvement of signalling molecules with respect to each of the steps. We have found that only the lipid-raft-targeted Lyn-PLCgamma2 construct, unlike non-specific membrane targeting, overcame the requirement for the adapter protein BLNK (B-cell linker). The stable expression of Lyn-PLCgamma2 was not accompanied by an increase in substrate hydrolysis in resting cells, which followed stimulation and specifically required the presence and/or activation of Syk, Btk, phosphoinositide 3-kinase but not BLNK, as established using deficient cell lines or specific inhibitors. Based on mutational analysis of the specific tyrosine residues [Tyr753-->Phe (Y753F)/Y759F] and SH2 (Src homology 2) domains (R564A/R672A) in the context of Lyn-PLCgamma2, we found that Tyr753/Tyr759 were essential, whereas the PLCgamma2 SH2 domains did not have an important role in the transient activation of Lyn-PLCgamma2 but may serve to stabilize an activated form in sustained activation.

Full Text

The Full Text of this article is available as a PDF (353.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aman M. J., Ravichandran K. S. A requirement for lipid rafts in B cell receptor induced Ca(2+) flux. Curr Biol. 2000 Apr 6;10(7):393–396. doi: 10.1016/s0960-9822(00)00415-2. [DOI] [PubMed] [Google Scholar]
  2. Baba Y., Hashimoto S., Matsushita M., Watanabe D., Kishimoto T., Kurosaki T., Tsukada S. BLNK mediates Syk-dependent Btk activation. Proc Natl Acad Sci U S A. 2001 Feb 13;98(5):2582–2586. doi: 10.1073/pnas.051626198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bae Y. S., Cantley L. G., Chen C. S., Kim S. R., Kwon K. S., Rhee S. G. Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 Feb 20;273(8):4465–4469. doi: 10.1074/jbc.273.8.4465. [DOI] [PubMed] [Google Scholar]
  4. Beitz L. O., Fruman D. A., Kurosaki T., Cantley L. C., Scharenberg A. M. SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J Biol Chem. 1999 Nov 12;274(46):32662–32666. doi: 10.1074/jbc.274.46.32662. [DOI] [PubMed] [Google Scholar]
  5. Bobe R., Wilde J. I., Maschberger P., Venkateswarlu K., Cullen P. J., Siess W., Watson S. P. Phosphatidylinositol 3-kinase-dependent translocation of phospholipase Cgamma2 in mouse megakaryocytes is independent of Bruton tyrosine kinase translocation. Blood. 2001 Feb 1;97(3):678–684. doi: 10.1182/blood.v97.3.678. [DOI] [PubMed] [Google Scholar]
  6. Chung J. B., Baumeister M. A., Monroe J. G. Cutting edge: differential sequestration of plasma membrane-associated B cell antigen receptor in mature and immature B cells into glycosphingolipid-enriched domains. J Immunol. 2001 Jan 15;166(2):736–740. doi: 10.4049/jimmunol.166.2.736. [DOI] [PubMed] [Google Scholar]
  7. Falasca M., Logan S. K., Lehto V. P., Baccante G., Lemmon M. A., Schlessinger J. Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 1998 Jan 15;17(2):414–422. doi: 10.1093/emboj/17.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernald A. W., Jones G. A., Carpenter G. Limited proteolysis of phospholipase C-gamma 1 indicates stable association of X and Y domains with enhanced catalytic activity. Biochem J. 1994 Sep 1;302(Pt 2):503–509. doi: 10.1042/bj3020503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fu C., Turck C. W., Kurosaki T., Chan A. C. BLNK: a central linker protein in B cell activation. Immunity. 1998 Jul;9(1):93–103. doi: 10.1016/s1074-7613(00)80591-9. [DOI] [PubMed] [Google Scholar]
  10. Guo B., Kato R. M., Garcia-Lloret M., Wahl M. I., Rawlings D. J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity. 2000 Aug;13(2):243–253. doi: 10.1016/s1074-7613(00)00024-8. [DOI] [PubMed] [Google Scholar]
  11. Homma Y., Takenawa T. Inhibitory effect of src homology (SH) 2/SH3 fragments of phospholipase C-gamma on the catalytic activity of phospholipase C isoforms. Identification of a novel phospholipase C inhibitor region. J Biol Chem. 1992 Oct 25;267(30):21844–21849. [PubMed] [Google Scholar]
  12. Horstman D. A., DeStefano K., Carpenter G. Enhanced phospholipase C-gamma1 activity produced by association of independently expressed X and Y domain polypeptides. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7518–7521. doi: 10.1073/pnas.93.15.7518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inabe Kazunori, Ishiai Masamichi, Scharenberg Andrew M., Freshney Norman, Downward Julian, Kurosaki Tomohiro. Vav3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation. J Exp Med. 2002 Jan 21;195(2):189–200. doi: 10.1084/jem.20011571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishiai M., Kurosaki M., Inabe K., Chan A. C., Sugamura K., Kurosaki T. Involvement of LAT, Gads, and Grb2 in compartmentation of SLP-76 to the plasma membrane. J Exp Med. 2000 Sep 18;192(6):847–856. doi: 10.1084/jem.192.6.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ishiai M., Kurosaki M., Pappu R., Okawa K., Ronko I., Fu C., Shibata M., Iwamatsu A., Chan A. C., Kurosaki T. BLNK required for coupling Syk to PLC gamma 2 and Rac1-JNK in B cells. Immunity. 1999 Jan;10(1):117–125. doi: 10.1016/s1074-7613(00)80012-6. [DOI] [PubMed] [Google Scholar]
  16. Ishiai M., Sugawara H., Kurosaki M., Kurosaki T. Cutting edge: association of phospholipase C-gamma 2 Src homology 2 domains with BLNK is critical for B cell antigen receptor signaling. J Immunol. 1999 Aug 15;163(4):1746–1749. [PubMed] [Google Scholar]
  17. Kane L. P., Lin J., Weiss A. Signal transduction by the TCR for antigen. Curr Opin Immunol. 2000 Jun;12(3):242–249. doi: 10.1016/s0952-7915(00)00083-2. [DOI] [PubMed] [Google Scholar]
  18. Katan M., Allen V. L. Modular PH and C2 domains in membrane attachment and other functions. FEBS Lett. 1999 Jun 4;452(1-2):36–40. doi: 10.1016/s0014-5793(99)00531-1. [DOI] [PubMed] [Google Scholar]
  19. Katan M. Families of phosphoinositide-specific phospholipase C: structure and function. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):5–17. doi: 10.1016/s0005-2760(98)00125-8. [DOI] [PubMed] [Google Scholar]
  20. Kim H. K., Kim J. W., Zilberstein A., Margolis B., Kim J. G., Schlessinger J., Rhee S. G. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell. 1991 May 3;65(3):435–441. doi: 10.1016/0092-8674(91)90461-7. [DOI] [PubMed] [Google Scholar]
  21. Koblan K. S., Schaber M. D., Edwards G., Gibbs J. B., Pompliano D. L. src-homology 2 (SH2) domain ligation as an allosteric regulator: modulation of phosphoinositide-specific phospholipase C gamma 1 structure and activity. Biochem J. 1995 Feb 1;305(Pt 3):745–751. doi: 10.1042/bj3050745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kurosaki T., Maeda A., Ishiai M., Hashimoto A., Inabe K., Takata M. Regulation of the phospholipase C-gamma2 pathway in B cells. Immunol Rev. 2000 Aug;176:19–29. doi: 10.1034/j.1600-065x.2000.00605.x. [DOI] [PubMed] [Google Scholar]
  23. Kurosaki Tomohiro. Regulation of B-cell signal transduction by adaptor proteins. Nat Rev Immunol. 2002 May;2(5):354–363. doi: 10.1038/nri801. [DOI] [PubMed] [Google Scholar]
  24. Matsuda M., Paterson H. F., Rodriguez R., Fensome A. C., Ellis M. V., Swann K., Katan M. Real time fluorescence imaging of PLC gamma translocation and its interaction with the epidermal growth factor receptor. J Cell Biol. 2001 Apr 30;153(3):599–612. doi: 10.1083/jcb.153.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ozdener Fatih, Dangelmaier Carol, Ashby Barrie, Kunapuli Satya P., Daniel James L. Activation of phospholipase Cgamma2 by tyrosine phosphorylation. Mol Pharmacol. 2002 Sep;62(3):672–679. doi: 10.1124/mol.62.3.672. [DOI] [PubMed] [Google Scholar]
  26. Petrie R. J., Schnetkamp P. P., Patel K. D., Awasthi-Kalia M., Deans J. P. Transient translocation of the B cell receptor and Src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J Immunol. 2000 Aug 1;165(3):1220–1227. doi: 10.4049/jimmunol.165.3.1220. [DOI] [PubMed] [Google Scholar]
  27. Pierce Susan K. Lipid rafts and B-cell activation. Nat Rev Immunol. 2002 Feb;2(2):96–105. doi: 10.1038/nri726. [DOI] [PubMed] [Google Scholar]
  28. Pike L. J., Casey L. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem. 1996 Oct 25;271(43):26453–26456. doi: 10.1074/jbc.271.43.26453. [DOI] [PubMed] [Google Scholar]
  29. Qin S., Chock P. B. Bruton's tyrosine kinase is essential for hydrogen peroxide-induced calcium signaling. Biochemistry. 2001 Jul 10;40(27):8085–8091. doi: 10.1021/bi0100788. [DOI] [PubMed] [Google Scholar]
  30. Qin S., Inazu T., Takata M., Kurosaki T., Homma Y., Yamamura H. Cooperation of tyrosine kinases p72syk and p53/56lyn regulates calcium mobilization in chicken B cell oxidant stress signaling. Eur J Biochem. 1996 Mar 1;236(2):443–449. doi: 10.1111/j.1432-1033.1996.00443.x. [DOI] [PubMed] [Google Scholar]
  31. Qin S., Stadtman E. R., Chock P. B. Regulation of oxidative stress-induced calcium release by phosphatidylinositol 3-kinase and Bruton's tyrosine kinase in B cells. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7118–7123. doi: 10.1073/pnas.130198197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rameh L. E., Rhee S. G., Spokes K., Kazlauskas A., Cantley L. C., Cantley L. G. Phosphoinositide 3-kinase regulates phospholipase Cgamma-mediated calcium signaling. J Biol Chem. 1998 Sep 11;273(37):23750–23757. doi: 10.1074/jbc.273.37.23750. [DOI] [PubMed] [Google Scholar]
  33. Rebecchi M. J., Pentyala S. N. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev. 2000 Oct;80(4):1291–1335. doi: 10.1152/physrev.2000.80.4.1291. [DOI] [PubMed] [Google Scholar]
  34. Resh M. D. Myristylation and palmitylation of Src family members: the fats of the matter. Cell. 1994 Feb 11;76(3):411–413. doi: 10.1016/0092-8674(94)90104-x. [DOI] [PubMed] [Google Scholar]
  35. Reuther G. W., Buss J. E., Quilliam L. A., Clark G. J., Der C. J. Analysis of function and regulation of proteins that mediate signal transduction by use of lipid-modified plasma membrane-targeting sequences. Methods Enzymol. 2000;327:331–350. doi: 10.1016/s0076-6879(00)27288-1. [DOI] [PubMed] [Google Scholar]
  36. Rhee S. G. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281–312. doi: 10.1146/annurev.biochem.70.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rodriguez R., Matsuda M., Perisic O., Bravo J., Paul A., Jones N. P., Light Y., Swann K., Williams R. L., Katan M. Tyrosine residues in phospholipase Cgamma 2 essential for the enzyme function in B-cell signaling. J Biol Chem. 2001 Oct 17;276(51):47982–47992. doi: 10.1074/jbc.M107577200. [DOI] [PubMed] [Google Scholar]
  38. Scharenberg A. M., El-Hillal O., Fruman D. A., Beitz L. O., Li Z., Lin S., Gout I., Cantley L. C., Rawlings D. J., Kinet J. P. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 1998 Apr 1;17(7):1961–1972. doi: 10.1093/emboj/17.7.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sekiya F., Bae Y. S., Rhee S. G. Regulation of phospholipase C isozymes: activation of phospholipase C-gamma in the absence of tyrosine-phosphorylation. Chem Phys Lipids. 1999 Apr;98(1-2):3–11. doi: 10.1016/s0009-3084(99)00013-4. [DOI] [PubMed] [Google Scholar]
  40. Sproul T. W., Malapati S., Kim J., Pierce S. K. Cutting edge: B cell antigen receptor signaling occurs outside lipid rafts in immature B cells. J Immunol. 2000 Dec 1;165(11):6020–6023. doi: 10.4049/jimmunol.165.11.6020. [DOI] [PubMed] [Google Scholar]
  41. Takata M., Kurosaki T. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2. J Exp Med. 1996 Jul 1;184(1):31–40. doi: 10.1084/jem.184.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Takata M., Sabe H., Hata A., Inazu T., Homma Y., Nukada T., Yamamura H., Kurosaki T. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 1994 Mar 15;13(6):1341–1349. doi: 10.1002/j.1460-2075.1994.tb06387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tomlinson M. G., Kurosaki T., Berson A. E., Fujii G. H., Johnston J. A., Bolen J. B. Reconstitution of Btk signaling by the atypical tec family tyrosine kinases Bmx and Txk. J Biol Chem. 1999 May 7;274(19):13577–13585. doi: 10.1074/jbc.274.19.13577. [DOI] [PubMed] [Google Scholar]
  44. Tomlinson M. G., Woods D. B., McMahon M., Wahl M. I., Witte O. N., Kurosaki T., Bolen J. B., Johnston J. A. A conditional form of Bruton's tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC Gamma 2 in B cells. BMC Immunol. 2001 Jun 8;2:4–4. doi: 10.1186/1471-2172-2-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tvorogov Denis, Carpenter Graham. EGF-dependent association of phospholipase C-gamma1 with c-Cbl. Exp Cell Res. 2002 Jul 1;277(1):86–94. doi: 10.1006/excr.2002.5545. [DOI] [PubMed] [Google Scholar]
  46. Verí M. C., DeBell K. E., Seminario M. C., DiBaldassarre A., Reischl I., Rawat R., Graham L., Noviello C., Rellahan B. L., Miscia S. Membrane raft-dependent regulation of phospholipase Cgamma-1 activation in T lymphocytes. Mol Cell Biol. 2001 Oct;21(20):6939–6950. doi: 10.1128/MCB.21.20.6939-6950.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wahl M. I., Jones G. A., Nishibe S., Rhee S. G., Carpenter G. Growth factor stimulation of phospholipase C-gamma 1 activity. Comparative properties of control and activated enzymes. J Biol Chem. 1992 May 25;267(15):10447–10456. [PubMed] [Google Scholar]
  48. Wang X. J., Liao H. J., Chattopadhyay A., Carpenter G. EGF-dependent translocation of green fluorescent protein-tagged PLC-gamma1 to the plasma membrane and endosomes. Exp Cell Res. 2001 Jul 1;267(1):28–36. doi: 10.1006/excr.2001.5241. [DOI] [PubMed] [Google Scholar]
  49. Watanabe D., Hashimoto S., Ishiai M., Matsushita M., Baba Y., Kishimoto T., Kurosaki T., Tsukada S. Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem. 2001 Aug 15;276(42):38595–38601. doi: 10.1074/jbc.M103675200. [DOI] [PubMed] [Google Scholar]
  50. Watt Stephen A., Kular Gursant, Fleming Ian N., Downes C. Peter, Lucocq John M. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem J. 2002 May 1;363(Pt 3):657–666. doi: 10.1042/0264-6021:3630657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wilde J. I., Watson S. P. Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal. 2001 Oct;13(10):691–701. doi: 10.1016/s0898-6568(01)00191-7. [DOI] [PubMed] [Google Scholar]
  52. Xavier R., Brennan T., Li Q., McCormack C., Seed B. Membrane compartmentation is required for efficient T cell activation. Immunity. 1998 Jun;8(6):723–732. doi: 10.1016/s1074-7613(00)80577-4. [DOI] [PubMed] [Google Scholar]
  53. Yasuda Tomoharu, Tezuka Tohru, Maeda Akito, Inazu Tetsuya, Yamanashi Yuji, Gu Hua, Kurosaki Tomohiro, Yamamoto Tadashi. Cbl-b positively regulates Btk-mediated activation of phospholipase C-gamma2 in B cells. J Exp Med. 2002 Jul 1;196(1):51–63. doi: 10.1084/jem.20020068. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES