Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):117–122. doi: 10.1042/BJ20030258

Characterization of human torsinA and its dystonia-associated mutant form.

Zhonghua Liu 1, Anna Zolkiewska 1, Michal Zolkiewski 1
PMCID: PMC1223590  PMID: 12780349

Abstract

Deletion of a single glutamate in torsinA correlates with early-onset dystonia, the most severe form of a neurological disorder characterized by uncontrollable muscle contractions. TorsinA is targeted to the ER (endoplasmic reticulum) in eukaryotic cells. We investigated the processing and membrane association of torsinA and the dystonia-associated Glu-deletion mutant (torsinAdeltaE). We found that the signal sequence of torsinA (residues 1-20 from the 40 amino-acid long N-terminal hydrophobic region) is cleaved in Drosophila S2 cells, as shown by the N-terminal sequencing after partial protein purification. TorsinA is not secreted from S2 cells. Consistently, sodium carbonate extraction and Triton X-114 treatment showed that torsinA is associated with the ER membrane in CHO (Chinese-hamster ovary) cells. In contrast, a variant of torsinA that contains the native signal sequence without the hydrophobic region Ile24-Pro40 does not associate with the membranes in CHO cells, and a truncated torsinA without the 40 N-terminal amino acids is secreted in the S2 culture. Thus the 20-amino-acid-long hydrophobic segment in torsinA, which remains at the N-terminus after signal-peptide cleavage, is responsible for the membrane anchoring of torsinA. TorsinAdeltaE showed similar cleavage of the 20 N-terminal amino acids and membrane association properties similar to wild-type torsinA but, unlike the wild-type, torsinAdeltaE was not secreted in the S2 culture even after deletion of the membrane-anchoring segment. This indicates that the dystonia-associated mutation produces a structurally distinct, possibly misfolded, form of torsinA, which cannot be properly processed in the secretory pathway of eukaryotic cells.

Full Text

The Full Text of this article is available as a PDF (166.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett Micheal E., Zolkiewski Michal. Site-directed mutagenesis of conserved charged amino acid residues in ClpB from Escherichia coli. Biochemistry. 2002 Sep 17;41(37):11277–11283. doi: 10.1021/bi026161s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bochtler M., Hartmann C., Song H. K., Bourenkov G. P., Bartunik H. D., Huber R. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature. 2000 Feb 17;403(6771):800–805. doi: 10.1038/35001629. [DOI] [PubMed] [Google Scholar]
  3. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  4. Breakefield X. O., Kamm C., Hanson P. I. TorsinA: movement at many levels. Neuron. 2001 Jul 19;31(1):9–12. doi: 10.1016/s0896-6273(01)00350-6. [DOI] [PubMed] [Google Scholar]
  5. Chevet E., Cameron P. H., Pelletier M. F., Thomas D. Y., Bergeron J. J. The endoplasmic reticulum: integration of protein folding, quality control, signaling and degradation. Curr Opin Struct Biol. 2001 Feb;11(1):120–124. doi: 10.1016/s0959-440x(00)00168-8. [DOI] [PubMed] [Google Scholar]
  6. Dougan David A., Mogk Axel, Zeth Kornelius, Turgay Kürsad, Bukau Bernd. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett. 2002 Oct 2;529(1):6–10. doi: 10.1016/s0014-5793(02)03179-4. [DOI] [PubMed] [Google Scholar]
  7. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goder V., Spiess M. Topogenesis of membrane proteins: determinants and dynamics. FEBS Lett. 2001 Aug 31;504(3):87–93. doi: 10.1016/s0014-5793(01)02712-0. [DOI] [PubMed] [Google Scholar]
  9. Hedreen J. C., Zweig R. M., DeLong M. R., Whitehouse P. J., Price D. L. Primary dystonias: a review of the pathology and suggestions for new directions of study. Adv Neurol. 1988;50:123–132. [PubMed] [Google Scholar]
  10. Hewett J., Gonzalez-Agosti C., Slater D., Ziefer P., Li S., Bergeron D., Jacoby D. J., Ozelius L. J., Ramesh V., Breakefield X. O. Mutant torsinA, responsible for early-onset torsion dystonia, forms membrane inclusions in cultured neural cells. Hum Mol Genet. 2000 May 22;9(9):1403–1413. doi: 10.1093/hmg/9.9.1403. [DOI] [PubMed] [Google Scholar]
  11. Kim P. S., Arvan P. Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr Rev. 1998 Apr;19(2):173–202. doi: 10.1210/edrv.19.2.0327. [DOI] [PubMed] [Google Scholar]
  12. Kopito R. R., Sitia R. Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep. 2000 Sep;1(3):225–231. doi: 10.1093/embo-reports/kvd052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kustedjo K., Bracey M. H., Cravatt B. F. Torsin A and its torsion dystonia-associated mutant forms are lumenal glycoproteins that exhibit distinct subcellular localizations. J Biol Chem. 2000 Sep 8;275(36):27933–27939. doi: 10.1074/jbc.M910025199. [DOI] [PubMed] [Google Scholar]
  14. Langer T. AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem Sci. 2000 May;25(5):247–251. doi: 10.1016/s0968-0004(99)01541-8. [DOI] [PubMed] [Google Scholar]
  15. Martoglio B., Dobberstein B. Signal sequences: more than just greasy peptides. Trends Cell Biol. 1998 Oct;8(10):410–415. doi: 10.1016/s0962-8924(98)01360-9. [DOI] [PubMed] [Google Scholar]
  16. Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 1999 Jan;9(1):27–43. [PubMed] [Google Scholar]
  17. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997 Jan;10(1):1–6. doi: 10.1093/protein/10.1.1. [DOI] [PubMed] [Google Scholar]
  18. Németh Andrea H. The genetics of primary dystonias and related disorders. Brain. 2002 Apr;125(Pt 4):695–721. doi: 10.1093/brain/awf090. [DOI] [PubMed] [Google Scholar]
  19. Ogura T., Wilkinson A. J. AAA+ superfamily ATPases: common structure--diverse function. Genes Cells. 2001 Jul;6(7):575–597. doi: 10.1046/j.1365-2443.2001.00447.x. [DOI] [PubMed] [Google Scholar]
  20. Ozelius L. J., Hewett J. W., Page C. E., Bressman S. B., Kramer P. L., Shalish C., de Leon D., Brin M. F., Raymond D., Corey D. P. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997 Sep;17(1):40–48. doi: 10.1038/ng0997-40. [DOI] [PubMed] [Google Scholar]
  21. Ozelius L. J., Hewett J. W., Page C. E., Bressman S. B., Kramer P. L., Shalish C., de Leon D., Brin M. F., Raymond D., Jacoby D. The gene (DYT1) for early-onset torsion dystonia encodes a novel protein related to the Clp protease/heat shock family. Adv Neurol. 1998;78:93–105. [PubMed] [Google Scholar]
  22. Shashidharan P., Kramer B. C., Walker R. H., Olanow C. W., Brin M. F. Immunohistochemical localization and distribution of torsinA in normal human and rat brain. Brain Res. 2000 Jan 24;853(2):197–206. doi: 10.1016/s0006-8993(99)02232-5. [DOI] [PubMed] [Google Scholar]
  23. Vale R. D. AAA proteins. Lords of the ring. J Cell Biol. 2000 Jul 10;150(1):F13–F19. doi: 10.1083/jcb.150.1.f13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES