Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Aug 15;374(Pt 1):97–107. doi: 10.1042/BJ20030242

A novel serine protease predominately expressed in macrophages.

Cailin Chen 1, Andrew L Darrow 1, Jian-Shen Qi 1, Michael R D'Andrea 1, Patricia Andrade-Gordon 1
PMCID: PMC1223591  PMID: 12795636

Abstract

We have identified a novel serine protease designated EOS by sequence identity searches. The deduced protein contains 284 amino acids with an active form containing 248 amino acids starting from an Ile-Val-Gly-Gly motif. The active form comprises a catalytic triad of conserved amino acids: His77, Asp126 and Ser231. It shares 44% identity with beta-tryptase and belongs to the S1 trypsin-like serine-protease family. Interestingly, this gene also maps to human chromosome 16p13.3. The purified protease showed amidolytic activity, cleaving its substrates before arginine residues. Tissue distribution by immunohistochemistry analysis demonstrated that EOS is highly expressed in spleen and moderately expressed in intestine, colon, lung and brain. We confirmed this expression pattern at the mRNA level by performing in situ hybridization. The results from both immunohistochemistry and in situ hybridization indicate that EOS is associated with macrophages. We corroborated this observation by double immunofluorescence using the anti-EOS antibody and an anti-CD68 antibody, a macrophage specific marker. Furthermore, we have detected a dramatic increase in immune staining of EOS in cultured U937 cells treated with PMA, which represent activated macrophages. This up-regulation is also reflected by elevated EOS mRNA in the PMA-treated U937 cells detected by Northern blotting. Since macrophages have important roles in various pathological conditions, such as wound healing, atherosclerosis and numerous inflammatory diseases, the localization of this novel serine protease to active macrophages may help to further the elucidation of the roles of this gene product in modulating these disorders.

Full Text

The Full Text of this article is available as a PDF (407.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Barrios V. E., Middleton S. C., Kashem M. A., Havill A. M., Toombs C. F., Wright C. D. Tryptase mediates hyperresponsiveness in isolated guinea pig bronchi. Life Sci. 1998;63(26):2295–2303. doi: 10.1016/s0024-3205(98)00518-9. [DOI] [PubMed] [Google Scholar]
  3. Corvera C. U., Déry O., McConalogue K., Böhm S. K., Khitin L. M., Caughey G. H., Payan D. G., Bunnett N. W. Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. J Clin Invest. 1997 Sep 15;100(6):1383–1393. doi: 10.1172/JCI119658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daniels S. E., Bhattacharrya S., James A., Leaves N. I., Young A., Hill M. R., Faux J. A., Ryan G. F., le Söuef P. N., Lathrop G. M. A genome-wide search for quantitative trait loci underlying asthma. Nature. 1996 Sep 19;383(6597):247–250. doi: 10.1038/383247a0. [DOI] [PubMed] [Google Scholar]
  5. Davie E. W., Fujikawa K., Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991 Oct 29;30(43):10363–10370. doi: 10.1021/bi00107a001. [DOI] [PubMed] [Google Scholar]
  6. Davis Joanne E., Sutton Vivien R., Browne Kylie A., Trapani Joseph A. Purification of natural killer cell cytotoxic granules for assaying target cell apoptosis. J Immunol Methods. 2003 May 1;276(1-2):59–68. doi: 10.1016/s0022-1759(03)00077-2. [DOI] [PubMed] [Google Scholar]
  7. Frohman M. A. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol. 1993;218:340–356. doi: 10.1016/0076-6879(93)18026-9. [DOI] [PubMed] [Google Scholar]
  8. Furukawa Y., Kubo N., Kikuchi J., Tokura A., Fujita N., Sakurabayashi I. Regulation of macrophage-specific gene expression by degenerated lipoproteins. Electrophoresis. 2000 Jan;21(2):338–346. doi: 10.1002/(SICI)1522-2683(20000101)21:2<338::AID-ELPS338>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  9. Gruber B. L., Schwartz L. B., Ramamurthy N. S., Irani A. M., Marchese M. J. Activation of latent rheumatoid synovial collagenase by human mast cell tryptase. J Immunol. 1988 Jun 1;140(11):3936–3942. [PubMed] [Google Scholar]
  10. Hooper J. D., Bowen N., Marshall H., Cullen L. M., Sood R., Daniels R., Stuttgen M. A., Normyle J. F., Higgs D. R., Kastner D. L. Localization, expression and genomic structure of the gene encoding the human serine protease testisin. Biochim Biophys Acta. 2000 Jun 21;1492(1):63–71. doi: 10.1016/s0167-4781(00)00071-3. [DOI] [PubMed] [Google Scholar]
  11. Inoue M., Isobe M., Itoyama T., Kido H. Structural analysis of esp-1 gene (PRSS 21). Biochem Biophys Res Commun. 1999 Dec 20;266(2):564–568. doi: 10.1006/bbrc.1999.1870. [DOI] [PubMed] [Google Scholar]
  12. Inoue M., Kanbe N., Kurosawa M., Kido H. Cloning and tissue distribution of a novel serine protease esp-1 from human eosinophils. Biochem Biophys Res Commun. 1998 Nov 18;252(2):307–312. doi: 10.1006/bbrc.1998.9645. [DOI] [PubMed] [Google Scholar]
  13. Ishii K., Hein L., Kobilka B., Coughlin S. R. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J Biol Chem. 1993 May 5;268(13):9780–9786. [PubMed] [Google Scholar]
  14. Jackson C. M., Nemerson Y. Blood coagulation. Annu Rev Biochem. 1980;49:765–811. doi: 10.1146/annurev.bi.49.070180.004001. [DOI] [PubMed] [Google Scholar]
  15. Katunuma N., Kido H. Biological functions of serine proteases in mast cells in allergic inflammation. J Cell Biochem. 1988 Dec;38(4):291–301. doi: 10.1002/jcb.240380408. [DOI] [PubMed] [Google Scholar]
  16. Louis R. E., Cataldo D., Buckley M. G., Sele J., Henket M., Lau L. C., Bartsch P., Walls A. F., Djukanovic R. Evidence of mast-cell activation in a subset of patients with eosinophilic chronic obstructive pulmonary disease. Eur Respir J. 2002 Aug;20(2):325–331. doi: 10.1183/09031936.02.00286302. [DOI] [PubMed] [Google Scholar]
  17. Matsumoto R., Sali A., Ghildyal N., Karplus M., Stevens R. L. Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to heparin serglycin proteoglycans. J Biol Chem. 1995 Aug 18;270(33):19524–19531. doi: 10.1074/jbc.270.33.19524. [DOI] [PubMed] [Google Scholar]
  18. Miller J. S., Moxley G., Schwartz L. B. Cloning and characterization of a second complementary DNA for human tryptase. J Clin Invest. 1990 Sep;86(3):864–870. doi: 10.1172/JCI114786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller J. S., Westin E. H., Schwartz L. B. Cloning and characterization of complementary DNA for human tryptase. J Clin Invest. 1989 Oct;84(4):1188–1195. doi: 10.1172/JCI114284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Molinari J. F., Scuri M., Moore W. R., Clark J., Tanaka R., Abraham W. M. Inhaled tryptase causes bronchoconstriction in sheep via histamine release. Am J Respir Crit Care Med. 1996 Sep;154(3 Pt 1):649–653. doi: 10.1164/ajrccm.154.3.8810600. [DOI] [PubMed] [Google Scholar]
  21. Molino M., Barnathan E. S., Numerof R., Clark J., Dreyer M., Cumashi A., Hoxie J. A., Schechter N., Woolkalis M., Brass L. F. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem. 1997 Feb 14;272(7):4043–4049. doi: 10.1074/jbc.272.7.4043. [DOI] [PubMed] [Google Scholar]
  22. Pallaoro M., Fejzo M. S., Shayesteh L., Blount J. L., Caughey G. H. Characterization of genes encoding known and novel human mast cell tryptases on chromosome 16p13.3. J Biol Chem. 1999 Feb 5;274(6):3355–3362. doi: 10.1074/jbc.274.6.3355. [DOI] [PubMed] [Google Scholar]
  23. Proud D., Kaplan A. P. Kinin formation: mechanisms and role in inflammatory disorders. Annu Rev Immunol. 1988;6:49–83. doi: 10.1146/annurev.iy.06.040188.000405. [DOI] [PubMed] [Google Scholar]
  24. Rawlings N. D., Barrett A. J. Families of serine peptidases. Methods Enzymol. 1994;244:19–61. doi: 10.1016/0076-6879(94)44004-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reid K. B., Porter R. R. The proteolytic activation systems of complement. Annu Rev Biochem. 1981;50:433–464. doi: 10.1146/annurev.bi.50.070181.002245. [DOI] [PubMed] [Google Scholar]
  26. Ren S., Lawson A. E., Carr M., Baumgarten C. M., Schwartz L. B. Human tryptase fibrinogenolysis is optimal at acidic pH and generates anticoagulant fragments in the presence of the anti-tryptase monoclonal antibody B12. J Immunol. 1997 Oct 1;159(7):3540–3548. [PubMed] [Google Scholar]
  27. Schechter N. M., Brass L. F., Lavker R. M., Jensen P. J. Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. J Cell Physiol. 1998 Aug;176(2):365–373. doi: 10.1002/(SICI)1097-4652(199808)176:2<365::AID-JCP15>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  28. Schechter N. M., Choi J. K., Slavin D. A., Deresienski D. T., Sayama S., Dong G., Lavker R. M., Proud D., Lazarus G. S. Identification of a chymotrypsin-like proteinase in human mast cells. J Immunol. 1986 Aug 1;137(3):962–970. [PubMed] [Google Scholar]
  29. Schmidlin Fabien, Amadesi Silvia, Dabbagh Karim, Lewis David E., Knott Patrick, Bunnett Nigel W., Gater Paul R., Geppetti Pierangelo, Bertrand Claude, Stevens Mary E. Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol. 2002 Nov 1;169(9):5315–5321. doi: 10.4049/jimmunol.169.9.5315. [DOI] [PubMed] [Google Scholar]
  30. Schwartz L. B., Kawahara M. S., Hugli T. E., Vik D., Fearon D. T., Austen K. F. Generation of C3a anaphylatoxin from human C3 by human mast cell tryptase. J Immunol. 1983 Apr;130(4):1891–1895. [PubMed] [Google Scholar]
  31. Schwartz L. B. Tryptase: a mast cell serine protease. Methods Enzymol. 1994;244:88–100. doi: 10.1016/0076-6879(94)44008-5. [DOI] [PubMed] [Google Scholar]
  32. Schwartz L. B. Tryptase: a mast cell serine protease. Methods Enzymol. 1994;244:88–100. doi: 10.1016/0076-6879(94)44008-5. [DOI] [PubMed] [Google Scholar]
  33. Simon S. R. Oxidants, metalloproteases and serine proteases in inflammation. Agents Actions Suppl. 1993;42:27–37. doi: 10.1007/978-3-0348-7397-0_3. [DOI] [PubMed] [Google Scholar]
  34. Smyth M. J., O'Connor M. D., Trapani J. A. Granzymes: a variety of serine protease specificities encoded by genetically distinct subfamilies. J Leukoc Biol. 1996 Nov;60(5):555–562. doi: 10.1002/jlb.60.5.555. [DOI] [PubMed] [Google Scholar]
  35. Stack M. S., Johnson D. A. Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). J Biol Chem. 1994 Apr 1;269(13):9416–9419. [PubMed] [Google Scholar]
  36. Taira Manako, Tamaoki Jun, Kondo Mitsuko, Kawatani Kiyomi, Nagai Atsushi. Serum B12 tryptase level as a marker of allergic airway inflammation in asthma. J Asthma. 2002 Jun;39(4):315–322. doi: 10.1081/jas-120002288. [DOI] [PubMed] [Google Scholar]
  37. Tamura Y., Hirado M., Okamura K., Minato Y., Fujii S. Synthetic inhibitors of trypsin, plasmin, kallikrein, thrombin, C1r-, and C1 esterase. Biochim Biophys Acta. 1977 Oct 13;484(2):417–422. doi: 10.1016/0005-2744(77)90097-3. [DOI] [PubMed] [Google Scholar]
  38. Vanderslice P., Ballinger S. M., Tam E. K., Goldstein S. M., Craik C. S., Caughey G. H. Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family. Proc Natl Acad Sci U S A. 1990 May;87(10):3811–3815. doi: 10.1073/pnas.87.10.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wong G. W., Tang Y., Feyfant E., Sali A., Li L., Li Y., Huang C., Friend D. S., Krilis S. A., Stevens R. L. Identification of a new member of the tryptase family of mouse and human mast cell proteases which possesses a novel COOH-terminal hydrophobic extension. J Biol Chem. 1999 Oct 22;274(43):30784–30793. doi: 10.1074/jbc.274.43.30784. [DOI] [PubMed] [Google Scholar]
  40. Wong G. W., Tang Y., Stevens R. L. Cloning of the human homolog of mouse transmembrane tryptase. Int Arch Allergy Immunol. 1999 Feb-Apr;118(2-4):419–421. doi: 10.1159/000024152. [DOI] [PubMed] [Google Scholar]
  41. Wong G. W., Yasuda S., Madhusudhan M. S., Li L., Yang Y., Krilis S. A., Sali A., Stevens R. L. Human tryptase epsilon (PRSS22), a new member of the chromosome 16p13.3 family of human serine proteases expressed in airway epithelial cells. J Biol Chem. 2001 Oct 15;276(52):49169–49182. doi: 10.1074/jbc.M108677200. [DOI] [PubMed] [Google Scholar]
  42. Yoshida S., Taniguchi M., Hirata A., Shiosaka S. Sequence analysis and expression of human neuropsin cDNA and gene. Gene. 1998 Jun 15;213(1-2):9–16. doi: 10.1016/s0378-1119(98)00232-7. [DOI] [PubMed] [Google Scholar]
  43. Yu J. X., Chao L., Chao J. Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mRNA. J Biol Chem. 1995 Jun 2;270(22):13483–13489. doi: 10.1074/jbc.270.22.13483. [DOI] [PubMed] [Google Scholar]
  44. Yu J. X., Chao L., Chao J. Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. J Biol Chem. 1994 Jul 22;269(29):18843–18848. [PubMed] [Google Scholar]
  45. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES