Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 1;374(Pt 2):307–314. doi: 10.1042/BJ20030348

Membrane disruption and cytotoxicity of hydrophobic N-alkylated imino sugars is independent of the inhibition of protein and lipid glycosylation.

Howard R Mellor 1, Frances M Platt 1, Raymond A Dwek 1, Terry D Butters 1
PMCID: PMC1223602  PMID: 12769816

Abstract

The N-alkyl moiety of N-alkylated imino sugars is crucial for therapeutic activities of these compounds as inhibitors of glycosphingolipid (GSL) biosynthesis and as antivirals. The improved potency afforded by a long N-alkyl moiety is coincident with increased compound-induced cytotoxicity. Therefore, in the present study, we examined the mechanism of this cytotoxicity in detail. Despite N-butyl-deoxynojirimycin and N-butyl-deoxygalactonojirimycin inhibiting the glycosylation of ceramide to glucosylceramide, ceramide levels did not increase in HL60 cells treated with these compounds. Long-chain N-alkylated imino sugars were toxic to cells at concentrations considerably lower than the critical micellar concentrations for these compounds and consequently did not solubilize radioactively labelled cellular proteins and lipids. However, membrane disruption and cell fragmentation did increase in a concentration- and chain-length-dependent manner. These results are consistent with previously proposed interactions between surface-active amphiphiles and protein-containing lipid membranes when drug concentrations are below the critical micellar concentration. Taken together, these results demonstrate that the cellular toxicity of hydrophobic N-alkylated imino sugars is due to cell lysis and cell fragmentation and, most importantly, is not related to the beneficial therapeutic effects of these compounds on protein and in lipid glycosylation. This information will aid in the future development of more selective imino sugar therapeutics for the treatment of human disease.

Full Text

The Full Text of this article is available as a PDF (171.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe A., Shayman J. A., Radin N. S. A novel enzyme that catalyzes the esterification of N-acetylsphingosine. Metabolism of C2-ceramides. J Biol Chem. 1996 Jun 14;271(24):14383–14389. doi: 10.1074/jbc.271.24.14383. [DOI] [PubMed] [Google Scholar]
  2. Andersson U., Butters T. D., Dwek R. A., Platt F. M. N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem Pharmacol. 2000 Apr 1;59(7):821–829. doi: 10.1016/s0006-2952(99)00384-6. [DOI] [PubMed] [Google Scholar]
  3. Betts J. C., Agranoff A. B., Nabel G. J., Shayman J. A. Dissociation of endogenous cellular ceramide from NF-kappa B activation. J Biol Chem. 1994 Mar 18;269(11):8455–8458. [PubMed] [Google Scholar]
  4. Bieberich E., Freischütz B., Suzuki M., Yu R. K. Differential effects of glycolipid biosynthesis inhibitors on ceramide-induced cell death in neuroblastoma cells. J Neurochem. 1999 Mar;72(3):1040–1049. doi: 10.1046/j.1471-4159.1999.0721040.x. [DOI] [PubMed] [Google Scholar]
  5. Bieberich E., Kawaguchi T., Yu R. K. N-acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J Biol Chem. 2000 Jan 7;275(1):177–181. doi: 10.1074/jbc.275.1.177. [DOI] [PubMed] [Google Scholar]
  6. Block T. M., Lu X., Mehta A. S., Blumberg B. S., Tennant B., Ebling M., Korba B., Lansky D. M., Jacob G. S., Dwek R. A. Treatment of chronic hepadnavirus infection in a woodchuck animal model with an inhibitor of protein folding and trafficking. Nat Med. 1998 May;4(5):610–614. doi: 10.1038/nm0598-610. [DOI] [PubMed] [Google Scholar]
  7. Branza-Nichita N., Durantel D., Carrouée-Durantel S., Dwek R. A., Zitzmann N. Antiviral effect of N-butyldeoxynojirimycin against bovine viral diarrhea virus correlates with misfolding of E2 envelope proteins and impairment of their association into E1-E2 heterodimers. J Virol. 2001 Apr;75(8):3527–3536. doi: 10.1128/JVI.75.8.3527-3536.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown D. A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000 Jun 9;275(23):17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
  9. Cox T., Lachmann R., Hollak C., Aerts J., van Weely S., Hrebícek M., Platt F., Butters T., Dwek R., Moyses C. Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet. 2000 Apr 29;355(9214):1481–1485. doi: 10.1016/S0140-6736(00)02161-9. [DOI] [PubMed] [Google Scholar]
  10. Durantel D., Branza-Nichita N., Carrouée-Durantel S., Butters T. D., Dwek R. A., Zitzmann N. Study of the mechanism of antiviral action of iminosugar derivatives against bovine viral diarrhea virus. J Virol. 2001 Oct;75(19):8987–8998. doi: 10.1128/JVI.75.19.8987-8998.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Felding-Habermann B., Igarashi Y., Fenderson B. A., Park L. S., Radin N. S., Inokuchi J., Strassmann G., Handa K., Hakomori S. A ceramide analogue inhibits T cell proliferative response through inhibition of glycosphingolipid synthesis and enhancement of N,N-dimethylsphingosine synthesis. Biochemistry. 1990 Jul 3;29(26):6314–6322. doi: 10.1021/bi00478a028. [DOI] [PubMed] [Google Scholar]
  12. Hino A., Morita M., Une M., Fujimura K., Kuramoto T. Effects of deoxycholic acid and its epimers on lipid peroxidation in isolated rat hepatocytes. J Biochem. 2001 May;129(5):683–689. doi: 10.1093/oxfordjournals.jbchem.a002907. [DOI] [PubMed] [Google Scholar]
  13. Hofmann K., Dixit V. M. Ceramide in apoptosis--does it really matter? Trends Biochem Sci. 1998 Oct;23(10):374–377. doi: 10.1016/s0968-0004(98)01289-4. [DOI] [PubMed] [Google Scholar]
  14. Ichikawa S., Nakajo N., Sakiyama H., Hirabayashi Y. A mouse B16 melanoma mutant deficient in glycolipids. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2703–2707. doi: 10.1073/pnas.91.7.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jeyakumar M., Butters T. D., Cortina-Borja M., Hunnam V., Proia R. L., Perry V. H., Dwek R. A., Platt F. M. Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6388–6393. doi: 10.1073/pnas.96.11.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jeyakumar M., Norflus F., Tifft C. J., Cortina-Borja M., Butters T. D., Proia R. L., Perry V. H., Dwek R. A., Platt F. M. Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood. 2001 Jan 1;97(1):327–329. doi: 10.1182/blood.v97.1.327. [DOI] [PubMed] [Google Scholar]
  17. Kolesnick R., Hannun Y. A. Ceramide and apoptosis. Trends Biochem Sci. 1999 Jun;24(6):224–227. doi: 10.1016/s0968-0004(99)01408-5. [DOI] [PubMed] [Google Scholar]
  18. Kragh-Hansen U., le Maire M., Nöel J. P., Gulik-Krzywicki T., Møller J. V. Transitional steps in the solubilization of protein-containing membranes and liposomes by nonionic detergent. Biochemistry. 1993 Feb 16;32(6):1648–1656. doi: 10.1021/bi00057a032. [DOI] [PubMed] [Google Scholar]
  19. Mellor Howard R., Nolan James, Pickering Lea, Wormald Mark R., Platt Frances M., Dwek Raymond A., Fleet George W. J., Butters Terry D. Preparation, biochemical characterization and biological properties of radiolabelled N-alkylated deoxynojirimycins. Biochem J. 2002 Aug 15;366(Pt 1):225–233. doi: 10.1042/BJ20020466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neugebauer J. M. Detergents: an overview. Methods Enzymol. 1990;182:239–253. doi: 10.1016/0076-6879(90)82020-3. [DOI] [PubMed] [Google Scholar]
  21. Okada Y., Radin N. S., Hakomori S. Phenotypic changes in 3T3 cells associated with the change of sphingolipid synthesis by a ceramide analog, 2-decanoylamino-3-morpholino-1-phenylpropanol (compound RV538). FEBS Lett. 1988 Aug 1;235(1-2):25–29. doi: 10.1016/0014-5793(88)81227-4. [DOI] [PubMed] [Google Scholar]
  22. Platt F. M., Neises G. R., Karlsson G. B., Dwek R. A., Butters T. D. N-butyldeoxygalactonojirimycin inhibits glycolipid biosynthesis but does not affect N-linked oligosaccharide processing. J Biol Chem. 1994 Oct 28;269(43):27108–27114. [PubMed] [Google Scholar]
  23. Platt F. M., Neises G. R., Reinkensmeier G., Townsend M. J., Perry V. H., Proia R. L., Winchester B., Dwek R. A., Butters T. D. Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science. 1997 Apr 18;276(5311):428–431. doi: 10.1126/science.276.5311.428. [DOI] [PubMed] [Google Scholar]
  24. Radin N. S. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J. 1996 Apr;13(2):153–157. doi: 10.1007/BF00731489. [DOI] [PubMed] [Google Scholar]
  25. Roda A., Hofmann A. F., Mysels K. J. The influence of bile salt structure on self-association in aqueous solutions. J Biol Chem. 1983 May 25;258(10):6362–6370. [PubMed] [Google Scholar]
  26. Rosenwald A. G., Machamer C. E., Pagano R. E. Effects of a sphingolipid synthesis inhibitor on membrane transport through the secretory pathway. Biochemistry. 1992 Apr 14;31(14):3581–3590. doi: 10.1021/bi00129a005. [DOI] [PubMed] [Google Scholar]
  27. Shukla G. S., Shukla A., Radin N. S. Gangliosides inhibit glucosylceramide synthase: a possible role in ganglioside therapy. J Neurochem. 1991 Jun;56(6):2125–2132. doi: 10.1111/j.1471-4159.1991.tb03475.x. [DOI] [PubMed] [Google Scholar]
  28. Strupp W., Weidinger G., Scheller C., Ehret R., Ohnimus H., Girschick H., Tas P., Flory E., Heinkelein M., Jassoy C. Treatment of cells with detergent activates caspases and induces apoptotic cell death. J Membr Biol. 2000 Jun 1;175(3):181–189. doi: 10.1007/s00232001066. [DOI] [PubMed] [Google Scholar]
  29. Tan A., van den Broek L., Bolscher J., Vermaas D. J., Pastoors L., van Boeckel C., Ploegh H. Introduction of oxygen into the alkyl chain of N-decyl-dNM decreases lipophilicity and results in increased retention of glucose residues on N-linked oligosaccharides. Glycobiology. 1994 Apr;4(2):141–149. doi: 10.1093/glycob/4.2.141. [DOI] [PubMed] [Google Scholar]
  30. Thornberry N. A., Rano T. A., Peterson E. P., Rasper D. M., Timkey T., Garcia-Calvo M., Houtzager V. M., Nordstrom P. A., Roy S., Vaillancourt J. P. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997 Jul 18;272(29):17907–17911. doi: 10.1074/jbc.272.29.17907. [DOI] [PubMed] [Google Scholar]
  31. Wolf B. B., Green D. R. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem. 1999 Jul 16;274(29):20049–20052. doi: 10.1074/jbc.274.29.20049. [DOI] [PubMed] [Google Scholar]
  32. Zitzmann N., Mehta A. S., Carrouée S., Butters T. D., Platt F. M., McCauley J., Blumberg B. S., Dwek R. A., Block T. M. Imino sugars inhibit the formation and secretion of bovine viral diarrhea virus, a pestivirus model of hepatitis C virus: implications for the development of broad spectrum anti-hepatitis virus agents. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11878–11882. doi: 10.1073/pnas.96.21.11878. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES