Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 1;374(Pt 2):403–411. doi: 10.1042/BJ20021955

Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells.

M Isabella Pörn-Ares 1, Takaomi C Saido 1, Tommy Andersson 1, Mikko P S Ares 1
PMCID: PMC1223604  PMID: 12775216

Abstract

Oxidized low-density lipoprotein (oxLDL) is known to induce apoptosis in endothelial cells, and this is believed to contribute to the progression of atherosclerosis. In the present study we made the novel observation that oxLDL-induced death of HMEC-1 cells is accompanied by activation of calpain. The mu-calpain inhibitor PD 151746 decreased oxLDL-induced cytotoxicity, whereas the general caspase inhibitor BAF (t-butoxycarbonyl-Asp-methoxyfluoromethylketone) had no effect. Also, oxLDL provoked calpain-dependent proteolysis of cytoskeletal alpha-fodrin in the HMEC-1 cells. Our observation of an autoproteolytic cleavage of the 80 kDa subunit of mu-calpain provided further evidence for an oxLDL-induced stimulation of calpain activity. The Bcl-2 protein Bid was also cleaved during oxLDL-elicited cell death, and this was prevented by calpain inhibitors, but not by inhibitors of cathepsin B and caspases. Treating the HMEC-1 cells with oxLDL did not result in detectable activation of procaspase 3 or cleavage of PARP [poly(ADP-ribose) polymerase], but it did cause polyubiquitination of caspase 3, indicating inactivation and possible degradation of this protease. Despite the lack of caspase 3 activation, oxLDL treatment led to the formation of nucleosomal DNA fragments characteristic of apoptosis. These novel results show that oxLDL initiates a calpain-mediated death-signalling pathway in endothelial cells.

Full Text

The Full Text of this article is available as a PDF (237.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ades E. W., Candal F. J., Swerlick R. A., George V. G., Summers S., Bosse D. C., Lawley T. J. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 1992 Dec;99(6):683–690. doi: 10.1111/1523-1747.ep12613748. [DOI] [PubMed] [Google Scholar]
  2. Ares M. P., Pörn-Ares M. I., Thyberg J., Juntti-Berggren L., Berggren P. O., Diczfalusy U., Kallin B., Björkhem I., Orrenius S., Nilsson J. Ca2+ channel blockers verapamil and nifedipine inhibit apoptosis induced by 25-hydroxycholesterol in human aortic smooth muscle cells. J Lipid Res. 1997 Oct;38(10):2049–2061. [PubMed] [Google Scholar]
  3. Blomgren K., Zhu C., Wang X., Karlsson J. O., Leverin A. L., Bahr B. A., Mallard C., Hagberg H. Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of "pathological apoptosis"? J Biol Chem. 2000 Dec 21;276(13):10191–10198. doi: 10.1074/jbc.M007807200. [DOI] [PubMed] [Google Scholar]
  4. Chua B. T., Guo K., Li P. Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem. 2000 Feb 18;275(7):5131–5135. doi: 10.1074/jbc.275.7.5131. [DOI] [PubMed] [Google Scholar]
  5. Dimmeler S., Haendeler J., Galle J., Zeiher A. M. Oxidized low-density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like proteases. A mechanistic clue to the 'response to injury' hypothesis. Circulation. 1997 Apr 1;95(7):1760–1763. doi: 10.1161/01.cir.95.7.1760. [DOI] [PubMed] [Google Scholar]
  6. Escargueil-Blanc I., Meilhac O., Pieraggi M. T., Arnal J. F., Salvayre R., Nègre-Salvayre A. Oxidized LDLs induce massive apoptosis of cultured human endothelial cells through a calcium-dependent pathway. Prevention by aurintricarboxylic acid. Arterioscler Thromb Vasc Biol. 1997 Feb;17(2):331–339. doi: 10.1161/01.atv.17.2.331. [DOI] [PubMed] [Google Scholar]
  7. Farber A., Kitzmiller T., Morganelli P. M., Pfeiffer J., Groveman D., Wagner R. J., Cronenwett J. L., Powell R. J. A caspase inhibitor decreases oxidized low-density lipoprotein-induced apoptosis in bovine endothelial cells. J Surg Res. 1999 Aug;85(2):323–330. doi: 10.1006/jsre.1999.5663. [DOI] [PubMed] [Google Scholar]
  8. Frostegård J., Hamsten A., Gidlund M., Nilsson J. Low density lipoprotein-induced growth of U937 cells: a novel method to determine the receptor binding of low density lipoprotein. J Lipid Res. 1990 Jan;31(1):37–44. [PubMed] [Google Scholar]
  9. Gao G., Dou Q. P. N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem. 2000 Sep 18;80(1):53–72. doi: 10.1002/1097-4644(20010101)80:1<53::aid-jcb60>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  10. Huang H. k., Joazeiro C. A., Bonfoco E., Kamada S., Leverson J. D., Hunter T. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem. 2000 Sep 1;275(35):26661–26664. doi: 10.1074/jbc.C000199200. [DOI] [PubMed] [Google Scholar]
  11. Jukema J. W., Zwinderman A. H., van Boven A. J., Reiber J. H., Van der Laarse A., Lie K. I., Bruschke A. V. Evidence for a synergistic effect of calcium channel blockers with lipid-lowering therapy in retarding progression of coronary atherosclerosis in symptomatic patients with normal to moderately raised cholesterol levels. The REGRESS Study Group. Arterioscler Thromb Vasc Biol. 1996 Mar;16(3):425–430. doi: 10.1161/01.atv.16.3.425. [DOI] [PubMed] [Google Scholar]
  12. Keller J. N., Hanni K. B., Markesbery W. R. Oxidized low-density lipoprotein induces neuronal death: implications for calcium, reactive oxygen species, and caspases. J Neurochem. 1999 Jun;72(6):2601–2609. doi: 10.1046/j.1471-4159.1999.0722601.x. [DOI] [PubMed] [Google Scholar]
  13. Kinoshita M., Shimokado K. Autocrine FGF-2 is responsible for the cell density-dependent susceptibility to apoptosis of HUVEC : A role of a calpain inhibitor-sensitive mechanism. Arterioscler Thromb Vasc Biol. 1999 Oct;19(10):2323–2329. doi: 10.1161/01.atv.19.10.2323. [DOI] [PubMed] [Google Scholar]
  14. Korsmeyer S. J., Wei M. C., Saito M., Weiler S., Oh K. J., Schlesinger P. H. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 2000 Dec;7(12):1166–1173. doi: 10.1038/sj.cdd.4400783. [DOI] [PubMed] [Google Scholar]
  15. Kubbutat M. H., Vousden K. H. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol Cell Biol. 1997 Jan;17(1):460–468. doi: 10.1128/mcb.17.1.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lankiewicz S., Marc Luetjens C., Truc Bui N., Krohn A. J., Poppe M., Cole G. M., Saido T. C., Prehn J. H. Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J Biol Chem. 2000 Jun 2;275(22):17064–17071. doi: 10.1074/jbc.275.22.17064. [DOI] [PubMed] [Google Scholar]
  17. Li D., Yang B., Mehta J. L. Ox-LDL induces apoptosis in human coronary artery endothelial cells: role of PKC, PTK, bcl-2, and Fas. Am J Physiol. 1998 Aug;275(2 Pt 2):H568–H576. doi: 10.1152/ajpheart.1998.275.2.H568. [DOI] [PubMed] [Google Scholar]
  18. Li H., Zhu H., Xu C. J., Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998 Aug 21;94(4):491–501. doi: 10.1016/s0092-8674(00)81590-1. [DOI] [PubMed] [Google Scholar]
  19. Locher Rudolf, Brandes Ralf P., Vetter Wilhelm, Barton Matthias. Native LDL induces proliferation of human vascular smooth muscle cells via redox-mediated activation of ERK 1/2 mitogen-activated protein kinases. Hypertension. 2002 Feb;39(2 Pt 2):645–650. doi: 10.1161/hy0202.103473. [DOI] [PubMed] [Google Scholar]
  20. Mandic Aleksandra, Viktorsson Kristina, Strandberg Linda, Heiden Thomas, Hansson Johan, Linder Stig, Shoshan Maria C. Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol. 2002 May;22(9):3003–3013. doi: 10.1128/MCB.22.9.3003-3013.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin S. J., O'Brien G. A., Nishioka W. K., McGahon A. J., Mahboubi A., Saido T. C., Green D. R. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem. 1995 Mar 24;270(12):6425–6428. doi: 10.1074/jbc.270.12.6425. [DOI] [PubMed] [Google Scholar]
  22. Mathiasen Ida Stenfeldt, Sergeev Igor N., Bastholm Lone, Elling Folmer, Norman Anthony W., Jättelä Marja. Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells. J Biol Chem. 2002 Jun 18;277(34):30738–30745. doi: 10.1074/jbc.M201558200. [DOI] [PubMed] [Google Scholar]
  23. McGinnis K. M., Gnegy M. E., Park Y. H., Mukerjee N., Wang K. K. Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun. 1999 Sep 16;263(1):94–99. doi: 10.1006/bbrc.1999.1315. [DOI] [PubMed] [Google Scholar]
  24. Memartino G. N., Croall D. E. Purification and characterization of a protein inhibitor of calcium-dependent proteases from rat liver. Arch Biochem Biophys. 1984 Aug 1;232(2):713–720. doi: 10.1016/0003-9861(84)90592-7. [DOI] [PubMed] [Google Scholar]
  25. Meredith J., Jr, Mu Z., Saido T., Du X. Cleavage of the cytoplasmic domain of the integrin beta3 subunit during endothelial cell apoptosis. J Biol Chem. 1998 Jul 31;273(31):19525–19531. doi: 10.1074/jbc.273.31.19525. [DOI] [PubMed] [Google Scholar]
  26. Nakagawa T., Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol. 2000 Aug 21;150(4):887–894. doi: 10.1083/jcb.150.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nath R., Raser K. J., Stafford D., Hajimohammadreza I., Posner A., Allen H., Talanian R. V., Yuen P., Gilbertsen R. B., Wang K. K. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J. 1996 Nov 1;319(Pt 3):683–690. doi: 10.1042/bj3190683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pörn-Ares M. I., Samali A., Orrenius S. Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ. 1998 Dec;5(12):1028–1033. doi: 10.1038/sj.cdd.4400424. [DOI] [PubMed] [Google Scholar]
  29. Ray S. K., Fidan M., Nowak M. W., Wilford G. G., Hogan E. L., Banik N. L. Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res. 2000 Jan 10;852(2):326–334. doi: 10.1016/s0006-8993(99)02148-4. [DOI] [PubMed] [Google Scholar]
  30. Saido T. C., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994 Aug;8(11):814–822. [PubMed] [Google Scholar]
  31. Saido T. C., Yokota M., Nagao S., Yamaura I., Tani E., Tsuchiya T., Suzuki K., Kawashima S. Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem. 1993 Nov 25;268(33):25239–25243. [PubMed] [Google Scholar]
  32. Salvayre Robert, Auge Nathalie, Benoist Herve, Negre-Salvayre Anne. Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta. 2002 Dec 30;1585(2-3):213–221. doi: 10.1016/s1388-1981(02)00343-8. [DOI] [PubMed] [Google Scholar]
  33. Sata M., Walsh K. Endothelial cell apoptosis induced by oxidized LDL is associated with the down-regulation of the cellular caspase inhibitor FLIP. J Biol Chem. 1998 Dec 11;273(50):33103–33106. doi: 10.1074/jbc.273.50.33103. [DOI] [PubMed] [Google Scholar]
  34. Sparrow C. P., Parthasarathy S., Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res. 1988 Jun;29(6):745–753. [PubMed] [Google Scholar]
  35. Squier M. K., Cohen J. J. Calpain, an upstream regulator of thymocyte apoptosis. J Immunol. 1997 Apr 15;158(8):3690–3697. [PubMed] [Google Scholar]
  36. Stefanec T. Endothelial apoptosis: could it have a role in the pathogenesis and treatment of disease? Chest. 2000 Mar;117(3):841–854. doi: 10.1378/chest.117.3.841. [DOI] [PubMed] [Google Scholar]
  37. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997 Aug 22;272(34):20963–20966. doi: 10.1074/jbc.272.34.20963. [DOI] [PubMed] [Google Scholar]
  38. Steinbrecher U. P., Zhang H. F., Lougheed M. Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med. 1990;9(2):155–168. doi: 10.1016/0891-5849(90)90119-4. [DOI] [PubMed] [Google Scholar]
  39. Stoka V., Turk B., Schendel S. L., Kim T. H., Cirman T., Snipas S. J., Ellerby L. M., Bredesen D., Freeze H., Abrahamson M. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem. 2000 Nov 9;276(5):3149–3157. doi: 10.1074/jbc.M008944200. [DOI] [PubMed] [Google Scholar]
  40. Strasser A., O'Connor L., Dixit V. M. Apoptosis signaling. Annu Rev Biochem. 2000;69:217–245. doi: 10.1146/annurev.biochem.69.1.217. [DOI] [PubMed] [Google Scholar]
  41. Suzuki Y., Nakabayashi Y., Takahashi R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A. 2001 Jul 10;98(15):8662–8667. doi: 10.1073/pnas.161506698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vanags D. M., Pörn-Ares M. I., Coppola S., Burgess D. H., Orrenius S. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem. 1996 Dec 6;271(49):31075–31085. doi: 10.1074/jbc.271.49.31075. [DOI] [PubMed] [Google Scholar]
  43. Vicca S., Hennequin C., Nguyen-Khoa T., Massy Z. A., Descamps-Latscha B., Drüeke T. B., Lacour B. Caspase-dependent apoptosis in THP-1 cells exposed to oxidized low-density lipoproteins. Biochem Biophys Res Commun. 2000 Jul 14;273(3):948–954. doi: 10.1006/bbrc.2000.3017. [DOI] [PubMed] [Google Scholar]
  44. Vieira O., Escargueil-Blanc I., Jürgens G., Borner C., Almeida L., Salvayre R., Nègre-Salvayre A. Oxidized LDLs alter the activity of the ubiquitin-proteasome pathway: potential role in oxidized LDL-induced apoptosis. FASEB J. 2000 Mar;14(3):532–542. doi: 10.1096/fasebj.14.3.532. [DOI] [PubMed] [Google Scholar]
  45. Wang K. K., Posmantur R., Nadimpalli R., Nath R., Mohan P., Nixon R. A., Talanian R. V., Keegan M., Herzog L., Allen H. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys. 1998 Aug 15;356(2):187–196. doi: 10.1006/abbi.1998.0748. [DOI] [PubMed] [Google Scholar]
  46. Waterhouse N. J., Finucane D. M., Green D. R., Elce J. S., Kumar S., Alnemri E. S., Litwack G., Khanna K., Lavin M. F., Watters D. J. Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ. 1998 Dec;5(12):1051–1061. doi: 10.1038/sj.cdd.4400425. [DOI] [PubMed] [Google Scholar]
  47. Waters D., Lespérance J. Calcium channel blockers and coronary atherosclerosis: from the rabbit to the real world. Am Heart J. 1994 Dec;128(6 Pt 2):1309–1316. doi: 10.1016/0002-8703(94)90253-4. [DOI] [PubMed] [Google Scholar]
  48. Wolf B. B., Goldstein J. C., Stennicke H. R., Beere H., Amarante-Mendes G. P., Salvesen G. S., Green D. R. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood. 1999 Sep 1;94(5):1683–1692. [PubMed] [Google Scholar]
  49. Wood D. E., Thomas A., Devi L. A., Berman Y., Beavis R. C., Reed J. C., Newcomb E. W. Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene. 1998 Sep 3;17(9):1069–1078. doi: 10.1038/sj.onc.1202034. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES