Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 1;374(Pt 2):281–296. doi: 10.1042/BJ20030312

Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+.

Tim D Werry 1, Graeme F Wilkinson 1, Gary B Willars 1
PMCID: PMC1223610  PMID: 12790797

Abstract

Alteration in [Ca(2+)](i) (the intracellular concentration of Ca(2+)) is a key regulator of many cellular processes. To allow precise regulation of [Ca(2+)](i) and a diversity of signalling by this ion, cells possess many mechanisms by which they are able to control [Ca(2+)](i) both globally and at the subcellular level. Among these are many members of the superfamily of GPCRs (G-protein-coupled receptors), which are characterized by the presence of seven transmembrane domains. Typically, those receptors able to activate PLC (phospholipase C) enzymes cause release of Ca(2+) from intracellular stores and influence Ca(2+) entry across the plasma membrane. It has been well documented that Ca(2+) signalling by one type of GPCR can be influenced by stimulation of a different type of GPCR. Indeed, many studies have demonstrated heterologous desensitization between two different PLC-coupled GPCRs. This is not surprising, given our current understanding of negative-feedback regulation and the likely shared components of the signalling pathway. However, there are also many documented examples of interactions between GPCRs, often coupling preferentially to different signalling pathways, which result in a potentiation of Ca(2+) signalling. Such interactions have important implications for both the control of cell function and the interpretation of in vitro cell-based assays. However, there is currently no single mechanism that adequately accounts for all examples of this type of cross-talk. Indeed, many studies either have not addressed this issue or have been unable to determine the mechanism(s) involved. This review seeks to explore a range of possible mechanisms to convey their potential diversity and to provide a basis for further experimental investigation.

Full Text

The Full Text of this article is available as a PDF (295.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AbdAlla S., Lother H., Quitterer U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature. 2000 Sep 7;407(6800):94–98. doi: 10.1038/35024095. [DOI] [PubMed] [Google Scholar]
  2. Ahuja S. K., Lee J. C., Murphy P. M. CXC chemokines bind to unique sets of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptor B. Determinants of high affinity binding and receptor activation are distinct. J Biol Chem. 1996 Jan 5;271(1):225–232. doi: 10.1074/jbc.271.1.225. [DOI] [PubMed] [Google Scholar]
  3. Akerman K. E., Näsman J., Lund P. E., Shariatmadari R., Kukkonen J. P. Endogenous extracellular purine nucleotides redirect alpha2-adrenoceptor signaling. FEBS Lett. 1998 Jul 3;430(3):209–212. doi: 10.1016/s0014-5793(98)00664-4. [DOI] [PubMed] [Google Scholar]
  4. Andriantsitohaina R., Stoclet J. C. Potentiation by neuropeptide Y of vasoconstriction in rat resistance arteries. Br J Pharmacol. 1988 Oct;95(2):419–428. doi: 10.1111/j.1476-5381.1988.tb11662.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arnaudeau S., Kelley W. L., Walsh J. V., Jr, Demaurex N. Mitochondria recycle Ca(2+) to the endoplasmic reticulum and prevent the depletion of neighboring endoplasmic reticulum regions. J Biol Chem. 2001 May 17;276(31):29430–29439. doi: 10.1074/jbc.M103274200. [DOI] [PubMed] [Google Scholar]
  6. Balasubramanian N., Levay K., Keren-Raifman T., Faurobert E., Slepak V. Z. Phosphorylation of the regulator of G protein signaling RGS9-1 by protein kinase A is a potential mechanism of light- and Ca2+-mediated regulation of G protein function in photoreceptors. Biochemistry. 2001 Oct 23;40(42):12619–12627. doi: 10.1021/bi015624b. [DOI] [PubMed] [Google Scholar]
  7. Banno Y., Asano T., Nozawa Y. Proteolytic modification of membrane-associated phospholipase C-beta by mu-calpain enhances its activation by G-protein beta gamma subunits in human platelets. FEBS Lett. 1994 Mar 7;340(3):185–188. doi: 10.1016/0014-5793(94)80134-7. [DOI] [PubMed] [Google Scholar]
  8. Bao Lan, Jin Shan-Xue, Zhang Chen, Wang Li-Hua, Xu Zhen-Zhong, Zhang Fang-Xiong, Wang Lie-Chen, Ning Feng-Shou, Cai Hai-Jiang, Guan Ji-Song. Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion. Neuron. 2003 Jan 9;37(1):121–133. doi: 10.1016/s0896-6273(02)01103-0. [DOI] [PubMed] [Google Scholar]
  9. Barki-Harrington Liza, Bookout Angela L., Wang Gaofeng, Lamb Maria E., Leeb-Lundberg L. M. Fredrik, Daaka Yehia. Requirement for direct cross-talk between B1 and B2 kinin receptors for the proliferation of androgen-insensitive prostate cancer PC3 cells. Biochem J. 2003 Apr 15;371(Pt 2):581–587. doi: 10.1042/BJ20021708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berman D. M., Gilman A. G. Mammalian RGS proteins: barbarians at the gate. J Biol Chem. 1998 Jan 16;273(3):1269–1272. doi: 10.1074/jbc.273.3.1269. [DOI] [PubMed] [Google Scholar]
  11. Berstein G., Blank J. L., Jhon D. Y., Exton J. H., Rhee S. G., Ross E. M. Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell. 1992 Aug 7;70(3):411–418. doi: 10.1016/0092-8674(92)90165-9. [DOI] [PubMed] [Google Scholar]
  12. Biber K., Klotz K. N., Berger M., Gebicke-Härter P. J., van Calker D. Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci. 1997 Jul 1;17(13):4956–4964. doi: 10.1523/JNEUROSCI.17-13-04956.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Biden T. J., Browne C. L. Cross-talk between muscarinic- and adenosine-receptor signalling in the regulation of cytosolic free Ca2+ and insulin secretion. Biochem J. 1993 Aug 1;293(Pt 3):721–728. doi: 10.1042/bj2930721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Blackmore P. F., Exton J. H. Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J Biol Chem. 1986 Aug 25;261(24):11056–11063. [PubMed] [Google Scholar]
  15. Blank J. L., Shaw K., Ross A. H., Exton J. H. Purification of a 110-kDa phosphoinositide phospholipase C that is activated by G-protein beta gamma-subunits. J Biol Chem. 1993 Nov 25;268(33):25184–25191. [PubMed] [Google Scholar]
  16. Blaustein M. P., Golovina V. A. Structural complexity and functional diversity of endoplasmic reticulum Ca(2+) stores. Trends Neurosci. 2001 Oct;24(10):602–608. doi: 10.1016/s0166-2236(00)01891-9. [DOI] [PubMed] [Google Scholar]
  17. Bouvier M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci. 2001 Apr;2(4):274–286. doi: 10.1038/35067575. [DOI] [PubMed] [Google Scholar]
  18. Bruce Jason I. E., Shuttleworth Trevor J., Giovannucci David R., Yule David I. Phosphorylation of inositol 1,4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca2+ signaling. J Biol Chem. 2001 Nov 1;277(2):1340–1348. doi: 10.1074/jbc.M106609200. [DOI] [PubMed] [Google Scholar]
  19. Buckley K. A., Wagstaff S. C., McKay G., Gaw A., Hipskind R. A., Bilbe G., Gallagher J. A., Bowler W. B. Parathyroid hormone potentiates nucleotide-induced [Ca2+]i release in rat osteoblasts independently of Gq activation or cyclic monophosphate accumulation. A mechanism for localizing systemic responses in bone. J Biol Chem. 2000 Dec 21;276(12):9565–9571. doi: 10.1074/jbc.M005672200. [DOI] [PubMed] [Google Scholar]
  20. Burgess G. M., Bird G. S., Obie J. F., Putney J. W., Jr The mechanism for synergism between phospholipase C- and adenylylcyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J Biol Chem. 1991 Mar 15;266(8):4772–4781. [PubMed] [Google Scholar]
  21. Cancela J. M., Churchill G. C., Galione A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature. 1999 Mar 4;398(6722):74–76. doi: 10.1038/18032. [DOI] [PubMed] [Google Scholar]
  22. Cancela Jose M., Van Coppenolle Fabien, Galione Antony, Tepikin Alexei V., Petersen Ole H. Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. EMBO J. 2002 Mar 1;21(5):909–919. doi: 10.1093/emboj/21.5.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chan J. S., Lee J. W., Ho M. K., Wong Y. H. Preactivation permits subsequent stimulation of phospholipase C by G(i)-coupled receptors. Mol Pharmacol. 2000 Apr;57(4):700–708. doi: 10.1124/mol.57.4.700. [DOI] [PubMed] [Google Scholar]
  24. Charles Andrew C., Mostovskaya Natalya, Asas Kathleen, Evans Christopher J., Dankovich Megan L., Hales Tim G. Coexpression of delta-opioid receptors with micro receptors in GH3 cells changes the functional response to micro agonists from inhibitory to excitatory. Mol Pharmacol. 2003 Jan;63(1):89–95. doi: 10.1124/mol.63.1.89. [DOI] [PubMed] [Google Scholar]
  25. Chidiac P., Ross E. M. Phospholipase C-beta1 directly accelerates GTP hydrolysis by Galphaq and acceleration is inhibited by Gbeta gamma subunits. J Biol Chem. 1999 Jul 9;274(28):19639–19643. doi: 10.1074/jbc.274.28.19639. [DOI] [PubMed] [Google Scholar]
  26. Chikumi Hiroki, Vázquez-Prado José, Servitja Joan-Marc, Miyazaki Hiroshi, Gutkind J. Silvio. Potent activation of RhoA by Galpha q and Gq-coupled receptors. J Biol Chem. 2002 May 16;277(30):27130–27134. doi: 10.1074/jbc.M204715200. [DOI] [PubMed] [Google Scholar]
  27. Chong L. D., Traynor-Kaplan A., Bokoch G. M., Schwartz M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell. 1994 Nov 4;79(3):507–513. doi: 10.1016/0092-8674(94)90259-3. [DOI] [PubMed] [Google Scholar]
  28. Churchill G. C., Galione A. NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores. EMBO J. 2001 Jun 1;20(11):2666–2671. doi: 10.1093/emboj/20.11.2666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Churchill Grant C., Okada Yuhei, Thomas Justyn M., Genazzani Armando A., Patel Sandip, Galione Antony. NAADP mobilizes Ca(2+) from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell. 2002 Nov 27;111(5):703–708. doi: 10.1016/s0092-8674(02)01082-6. [DOI] [PubMed] [Google Scholar]
  30. Cilluffo M. C., Esqueda E., Farahbakhsh N. A. Multiple receptor activation elicits synergistic IP formation in nonpigmented ciliary body epithelial cells. Am J Physiol Cell Physiol. 2000 Sep;279(3):C734–C743. doi: 10.1152/ajpcell.2000.279.3.C734. [DOI] [PubMed] [Google Scholar]
  31. Ciruela F., Escriche M., Burgueno J., Angulo E., Casado V., Soloviev M. M., Canela E. I., Mallol J., Chan W. Y., Lluis C. Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J Biol Chem. 2001 Feb 13;276(21):18345–18351. doi: 10.1074/jbc.M006960200. [DOI] [PubMed] [Google Scholar]
  32. Clementi E. Role of nitric oxide and its intracellular signalling pathways in the control of Ca2+ homeostasis. Biochem Pharmacol. 1998 Mar 15;55(6):713–718. doi: 10.1016/s0006-2952(97)00375-4. [DOI] [PubMed] [Google Scholar]
  33. Cocks T. M., Jenkinson D. H., Koller K. Interactions between receptors that increase cytosolic calcium and cyclic AMP in guinea-pig liver cells. Br J Pharmacol. 1984 Sep;83(1):281–291. doi: 10.1111/j.1476-5381.1984.tb10144.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Collins T. J., Lipp P., Berridge M. J., Li W., Bootman M. D. Inositol 1,4,5-trisphosphate-induced Ca2+ release is inhibited by mitochondrial depolarization. Biochem J. 2000 Apr 15;347(Pt 2):593–600. doi: 10.1042/0264-6021:3470593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Connolly E., Nedergaard J. Beta-adrenergic modulation of Ca2+ uptake by isolated brown adipocytes. Possible involvement of mitochondria. J Biol Chem. 1988 Aug 5;263(22):10574–10582. [PubMed] [Google Scholar]
  36. Connolly T. M., Bansal V. S., Bross T. E., Irvine R. F., Majerus P. W. The metabolism of tris- and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J Biol Chem. 1987 Feb 15;262(5):2146–2149. [PubMed] [Google Scholar]
  37. Connor M. A., Keir M. J., Henderson G. delta-opioid receptor mobilization of intracellular calcium in SH-SY5Y cells: lack of evidence for delta-receptor subtypes. Neuropharmacology. 1997 Jan;36(1):125–133. doi: 10.1016/s0028-3908(96)00144-x. [DOI] [PubMed] [Google Scholar]
  38. Connor M., Henderson G. delta- and mu-opioid receptor mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. Br J Pharmacol. 1996 Jan;117(2):333–340. doi: 10.1111/j.1476-5381.1996.tb15195.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Connor M., Yeo A., Henderson G. Neuropeptide Y Y2 receptor and somatostatin sst2 receptor coupling to mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. Br J Pharmacol. 1997 Feb;120(3):455–463. doi: 10.1038/sj.bjp.0700920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Conway B. R., Withiam-Leitch M., Rubin R. P. Regulation of phosphatidylinositol 4-kinase activity in rat pancreatic acini. Mol Pharmacol. 1993 Feb;43(2):286–292. [PubMed] [Google Scholar]
  41. Cordeaux Yolande, Hill Stephen J. Mechanisms of cross-talk between G-protein-coupled receptors. Neurosignals. 2002 Jan-Feb;11(1):45–57. doi: 10.1159/000057321. [DOI] [PubMed] [Google Scholar]
  42. Cotecchia S., Kobilka B. K., Daniel K. W., Nolan R. D., Lapetina E. Y., Caron M. G., Lefkowitz R. J., Regan J. W. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem. 1990 Jan 5;265(1):63–69. [PubMed] [Google Scholar]
  43. Crawford M. L., Young J. M. Potentiation by gamma-aminobutyric acid of alpha 1-agonist-induced accumulation of inositol phosphates in slices of rat cerebral cortex. J Neurochem. 1990 Jun;54(6):2100–2109. doi: 10.1111/j.1471-4159.1990.tb04916.x. [DOI] [PubMed] [Google Scholar]
  44. Cunningham M. L., Waldo G. L., Hollinger S., Hepler J. R., Harden T. K. Protein kinase C phosphorylates RGS2 and modulates its capacity for negative regulation of Galpha 11 signaling. J Biol Chem. 2000 Nov 3;276(8):5438–5444. doi: 10.1074/jbc.M007699200. [DOI] [PubMed] [Google Scholar]
  45. D'Andrea P., Paschini V., Vittur F. Dual mechanism for cAMP-dependent modulation of Ca2+ signalling in articular chondrocytes. Biochem J. 1996 Sep 1;318(Pt 2):569–573. doi: 10.1042/bj3180569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Daaka Y., Luttrell L. M., Lefkowitz R. J. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997 Nov 6;390(6655):88–91. doi: 10.1038/36362. [DOI] [PubMed] [Google Scholar]
  47. Delumeau J. C., Marin P., Cordier J., Glowinski J., Premont J. Synergistic effects in the alpha 1- and beta 1-adrenergic regulations of intracellular calcium levels in striatal astrocytes. Cell Mol Neurobiol. 1991 Apr;11(2):263–276. doi: 10.1007/BF00769039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Delumeau J. C., Marin P., Tence M., Cordier J., Glowinski J., Premont J. Synergistic regulation of cytosolic Ca2+ concentration by somatostatin and alpha 1-adrenergic agonists in mouse astrocytes. J Physiol Paris. 1992;86(1-3):31–38. doi: 10.1016/s0928-4257(05)80005-1. [DOI] [PubMed] [Google Scholar]
  49. Delumeau Jean C., Tencé Martine, Marin Philippe, Cordier Jocelyne, Glowinski Jacques, Prémont Joël. Synergistic Regulation of Cytosolic Ca2+ Concentration by Adenosine and alpha1-Adrenergic Agonists in Mouse Striatal Astrocytes. Eur J Neurosci. 1991 Jun;3(6):539–550. doi: 10.1111/j.1460-9568.1991.tb00841.x. [DOI] [PubMed] [Google Scholar]
  50. Devlin Mark G., Christopoulos Arthur. Modulation of cannabinoid agonist binding by 5-HT in the rat cerebellum. J Neurochem. 2002 Mar;80(6):1095–1102. doi: 10.1046/j.0022-3042.2002.00797.x. [DOI] [PubMed] [Google Scholar]
  51. Dianzani C., Lombardi G., Collino M., Ferrara C., Cassone M. C., Fantozzi R. Priming effects of substance P on calcium changes evoked by interleukin-8 in human neutrophils. J Leukoc Biol. 2001 Jun;69(6):1013–1018. [PubMed] [Google Scholar]
  52. Dickenson J. M., Hill S. J. Human 5-HT1B receptor stimulated inositol phospholipid hydrolysis in CHO cells: synergy with Gq-coupled receptors. Eur J Pharmacol. 1998 May 8;348(2-3):279–285. doi: 10.1016/s0014-2999(98)00148-4. [DOI] [PubMed] [Google Scholar]
  53. Dickenson J. M., Hill S. J. Interactions between adenosine A1- and histamine H1-receptors. Int J Biochem. 1994 Aug;26(8):959–969. doi: 10.1016/0020-711x(94)90066-3. [DOI] [PubMed] [Google Scholar]
  54. Dickenson J. M., Hill S. J. Involvement of G-protein betagamma subunits in coupling the adenosine A1 receptor to phospholipase C in transfected CHO cells. Eur J Pharmacol. 1998 Aug 14;355(1):85–93. doi: 10.1016/s0014-2999(98)00468-3. [DOI] [PubMed] [Google Scholar]
  55. Dickenson J. M., Hill S. J. Synergistic interactions between human transfected adenosine A1 receptors and endogenous cholecystokinin receptors in CHO cells. Eur J Pharmacol. 1996 Apr 29;302(1-3):141–151. doi: 10.1016/0014-2999(96)00039-8. [DOI] [PubMed] [Google Scholar]
  56. Dittman A. H., Weber J. P., Hinds T. R., Choi E. J., Migeon J. C., Nathanson N. M., Storm D. R. A novel mechanism for coupling of m4 muscarinic acetylcholine receptors to calmodulin-sensitive adenylyl cyclases: crossover from G protein-coupled inhibition to stimulation. Biochemistry. 1994 Feb 1;33(4):943–951. doi: 10.1021/bi00170a013. [DOI] [PubMed] [Google Scholar]
  57. Dodge K. L., Sanborn B. M. Evidence for inhibition by protein kinase A of receptor/G alpha(q)/phospholipase C (PLC) coupling by a mechanism not involving PLCbeta2. Endocrinology. 1998 May;139(5):2265–2271. doi: 10.1210/endo.139.5.5963. [DOI] [PubMed] [Google Scholar]
  58. Eason M. G., Kurose H., Holt B. D., Raymond J. R., Liggett S. B. Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem. 1992 Aug 5;267(22):15795–15801. [PubMed] [Google Scholar]
  59. Enouf J., Giraud F., Bredoux R., Bourdeau N., Levy-Toledano S. Possible role of a cAMP-dependent phosphorylation in the calcium release mediated by inositol 1,4,5-trisphosphate in human platelet membrane vesicles. Biochim Biophys Acta. 1987 Apr 2;928(1):76–82. doi: 10.1016/0167-4889(87)90087-5. [DOI] [PubMed] [Google Scholar]
  60. Erdös E. G., Marcic B. M. Kinins, receptors, kininases and inhibitors--where did they lead us? Biol Chem. 2001 Jan;382(1):43–47. doi: 10.1515/BC.2001.007. [DOI] [PubMed] [Google Scholar]
  61. Farahbakhsh N. A., Cilluffo M. C. Synergistic effect of adrenergic and muscarinic receptor activation on [Ca2+]i in rabbit ciliary body epithelium. J Physiol. 1994 Jun 1;477(Pt 2):215–221. doi: 10.1113/jphysiol.1994.sp020185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Farahbakhsh N. A., Cilluffo M. C. Synergistic increase in Ca2+ produced by A1 adenosine and muscarinic receptor activation via a pertussis-toxin-sensitive pathway in epithelial cells of the rabbit ciliary body. Exp Eye Res. 1997 Feb;64(2):173–179. doi: 10.1006/exer.1996.0194. [DOI] [PubMed] [Google Scholar]
  63. Ferguson S. S. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001 Mar;53(1):1–24. [PubMed] [Google Scholar]
  64. Genazzani A. A., Galione A. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem J. 1996 May 1;315(Pt 3):721–725. doi: 10.1042/bj3150721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Genazzani A. A., L'Episcopo M. R., Casabona G., Shinozaki H., Nicoletti F. (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl) glycine positively modulates metabotropic glutamate receptors coupled to polyphosphoinositide hydrolysis in rat hippocampal slices. Brain Res. 1994 Oct 3;659(1-2):10–16. doi: 10.1016/0006-8993(94)90857-5. [DOI] [PubMed] [Google Scholar]
  66. Genazzani A. A., Mezna M., Dickey D. M., Michelangeli F., Walseth T. F., Galione A. Pharmacological properties of the Ca2+-release mechanism sensitive to NAADP in the sea urchin egg. Br J Pharmacol. 1997 Aug;121(7):1489–1495. doi: 10.1038/sj.bjp.0701295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. George S. R., Fan T., Xie Z., Tse R., Tam V., Varghese G., O'Dowd B. F. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem. 2000 Aug 25;275(34):26128–26135. doi: 10.1074/jbc.M000345200. [DOI] [PubMed] [Google Scholar]
  68. Gerwins P., Fredholm B. B. ATP and its metabolite adenosine act synergistically to mobilize intracellular calcium via the formation of inositol 1,4,5-trisphosphate in a smooth muscle cell line. J Biol Chem. 1992 Aug 15;267(23):16081–16087. [PubMed] [Google Scholar]
  69. Gerwins P., Fredholm B. B. Activation of adenosine A1 and bradykinin receptors increases protein kinase C and phospholipase D activity in smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol. 1995 Feb;351(2):186–193. doi: 10.1007/BF00169332. [DOI] [PubMed] [Google Scholar]
  70. Gerwins P., Fredholm B. B. Stimulation of adenosine A1 receptors and bradykinin receptors, which act via different G proteins, synergistically raises inositol 1,4,5-trisphosphate and intracellular free calcium in DDT1 MF-2 smooth muscle cells. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7330–7334. doi: 10.1073/pnas.89.16.7330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Gouldson P. R., Snell C. R., Bywater R. P., Higgs C., Reynolds C. A. Domain swapping in G-protein coupled receptor dimers. Protein Eng. 1998 Dec;11(12):1181–1193. doi: 10.1093/protein/11.12.1181. [DOI] [PubMed] [Google Scholar]
  72. Gray J. A., Sheffler D. J., Bhatnagar A., Woods J. A., Hufeisen S. J., Benovic J. L., Roth B. L. Cell-type specific effects of endocytosis inhibitors on 5-hydroxytryptamine(2A) receptor desensitization and resensitization reveal an arrestin-, GRK2-, and GRK5-independent mode of regulation in human embryonic kidney 293 cells. Mol Pharmacol. 2001 Nov;60(5):1020–1030. doi: 10.1124/mol.60.5.1020. [DOI] [PubMed] [Google Scholar]
  73. Gudermann T., Birnbaumer M., Birnbaumer L. Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2+ mobilization. Studies with the cloned murine luteinizing hormone receptor expressed in L cells. J Biol Chem. 1992 Mar 5;267(7):4479–4488. [PubMed] [Google Scholar]
  74. Guihard G., Combettes L., Capiod T. 3':5'-cyclic guanosine monophosphate (cGMP) potentiates the inositol 1,4,5-trisphosphate-evoked Ca2+ release in guinea-pig hepatocytes. Biochem J. 1996 Sep 15;318(Pt 3):849–855. doi: 10.1042/bj3180849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Hajnóczky G., Gao E., Nomura T., Hoek J. B., Thomas A. P. Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate-induced Ca2+ mobilization in permeabilized hepatocytes. Biochem J. 1993 Jul 15;293(Pt 2):413–422. doi: 10.1042/bj2930413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Hajnóczky G., Hager R., Thomas A. P. Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+. J Biol Chem. 1999 May 14;274(20):14157–14162. doi: 10.1074/jbc.274.20.14157. [DOI] [PubMed] [Google Scholar]
  77. Hajnóczky G., Lin C., Thomas A. P. Luminal communication between intracellular calcium stores modulated by GTP and the cytoskeleton. J Biol Chem. 1994 Apr 8;269(14):10280–10287. [PubMed] [Google Scholar]
  78. Hebert T. E., Moffett S., Morello J. P., Loisel T. P., Bichet D. G., Barret C., Bouvier M. A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem. 1996 Jul 5;271(27):16384–16392. doi: 10.1074/jbc.271.27.16384. [DOI] [PubMed] [Google Scholar]
  79. Hermosura M. C., Takeuchi H., Fleig A., Riley A. M., Potter B. V., Hirata M., Penner R. InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature. 2000 Dec 7;408(6813):735–740. doi: 10.1038/35047115. [DOI] [PubMed] [Google Scholar]
  80. Hirono M., Yoshioka T., Konishi S. GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat Neurosci. 2001 Dec;4(12):1207–1216. doi: 10.1038/nn764. [DOI] [PubMed] [Google Scholar]
  81. Hoiting B. H., Meurs H., Schuiling M., Kuipers R., Elzinga C. R., Zaagsma J. Modulation of agonist-induced phosphoinositide metabolism, Ca2+ signalling and contraction of airway smooth muscle by cyclic AMP-dependent mechanisms. Br J Pharmacol. 1996 Feb;117(3):419–426. doi: 10.1111/j.1476-5381.1996.tb15207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Holtbäck U., Brismar H., DiBona G. F., Fu M., Greengard P., Aperia A. Receptor recruitment: a mechanism for interactions between G protein-coupled receptors. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7271–7275. doi: 10.1073/pnas.96.13.7271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Huang Chunfa, Handlogten Mary E., Miller R. Tyler. Parallel activation of phosphatidylinositol 4-kinase and phospholipase C by the extracellular calcium-sensing receptor. J Biol Chem. 2002 Mar 20;277(23):20293–20300. doi: 10.1074/jbc.M200831200. [DOI] [PubMed] [Google Scholar]
  84. Iacovelli L., Sallese M., Mariggiò S., de Blasi A. Regulation of G-protein-coupled receptor kinase subtypes by calcium sensor proteins. FASEB J. 1999 Jan;13(1):1–8. doi: 10.1096/fasebj.13.1.1. [DOI] [PubMed] [Google Scholar]
  85. Ichas F., Jouaville L. S., Mazat J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997 Jun 27;89(7):1145–1153. doi: 10.1016/s0092-8674(00)80301-3. [DOI] [PubMed] [Google Scholar]
  86. Ichas F., Jouaville L. S., Sidash S. S., Mazat J. P., Holmuhamedov E. L. Mitochondrial calcium spiking: a transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling. FEBS Lett. 1994 Jul 11;348(2):211–215. doi: 10.1016/0014-5793(94)00615-6. [DOI] [PubMed] [Google Scholar]
  87. Igishi T., Gutkind J. S. Tyrosine kinases of the Src family participate in signaling to MAP kinase from both Gq and Gi-coupled receptors. Biochem Biophys Res Commun. 1998 Mar 6;244(1):5–10. doi: 10.1006/bbrc.1998.8208. [DOI] [PubMed] [Google Scholar]
  88. Ilkaeva Olga, Kinch Lisa N., Paulssen Ruth H., Ross Elliott M. Mutations in the carboxyl-terminal domain of phospholipase C-beta 1 delineate the dimer interface and a potential Galphaq interaction site. J Biol Chem. 2001 Nov 29;277(6):4294–4300. doi: 10.1074/jbc.M109612200. [DOI] [PubMed] [Google Scholar]
  89. Irvine R. Inositol phosphates: Does IP(4) run a protection racket? Curr Biol. 2001 Mar 6;11(5):R172–R174. doi: 10.1016/s0960-9822(01)00086-0. [DOI] [PubMed] [Google Scholar]
  90. Ishii M., Inanobe A., Fujita S., Makino Y., Hosoya Y., Kurachi Y. Ca(2+) elevation evoked by membrane depolarization regulates G protein cycle via RGS proteins in the heart. Circ Res. 2001 Nov 23;89(11):1045–1050. doi: 10.1161/hh2301.100815. [DOI] [PubMed] [Google Scholar]
  91. Ishii Masaru, Inanobe Atsushi, Kurachi Yoshihisa. PIP3 inhibition of RGS protein and its reversal by Ca2+/calmodulin mediate voltage-dependent control of the G protein cycle in a cardiac K+ channel. Proc Natl Acad Sci U S A. 2002 Mar 19;99(7):4325–4330. doi: 10.1073/pnas.072073399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Jiang H., Kuang Y., Wu Y., Smrcka A., Simon M. I., Wu D. Pertussis toxin-sensitive activation of phospholipase C by the C5a and fMet-Leu-Phe receptors. J Biol Chem. 1996 Jun 7;271(23):13430–13434. doi: 10.1074/jbc.271.23.13430. [DOI] [PubMed] [Google Scholar]
  93. Jiménez A. I., Castro E., Mirabet M., Franco R., Delicado E. G., Miras-Portugal M. T. Potentiation of ATP calcium responses by A2B receptor stimulation and other signals coupled to Gs proteins in type-1 cerebellar astrocytes. Glia. 1999 Apr;26(2):119–128. [PubMed] [Google Scholar]
  94. Jones K. A., Borowsky B., Tamm J. A., Craig D. A., Durkin M. M., Dai M., Yao W. J., Johnson M., Gunwaldsen C., Huang L. Y. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature. 1998 Dec 17;396(6712):674–679. doi: 10.1038/25348. [DOI] [PubMed] [Google Scholar]
  95. Jordan B. A., Devi L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 1999 Jun 17;399(6737):697–700. doi: 10.1038/21441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Kabbani Nadine, Negyessy Laszlo, Lin Ridwan, Goldman-Rakic Patricia, Levenson Robert. Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci. 2002 Oct 1;22(19):8476–8486. doi: 10.1523/JNEUROSCI.22-19-08476.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Katz A., Wu D., Simon M. I. Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature. 1992 Dec 17;360(6405):686–689. doi: 10.1038/360686a0. [DOI] [PubMed] [Google Scholar]
  98. Kaupmann K., Malitschek B., Schuler V., Heid J., Froestl W., Beck P., Mosbacher J., Bischoff S., Kulik A., Shigemoto R. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature. 1998 Dec 17;396(6712):683–687. doi: 10.1038/25360. [DOI] [PubMed] [Google Scholar]
  99. Koizumi Schuichi, Rosa Patrizia, Willars Gary B., Challiss R. A. John, Taverna Elena, Francolini Maura, Bootman Martin D., Lipp Peter, Inoue Kazuhide, Roder John. Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem. 2002 May 28;277(33):30315–30324. doi: 10.1074/jbc.M201132200. [DOI] [PubMed] [Google Scholar]
  100. Komatsu Y. GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J Neurosci. 1996 Oct 15;16(20):6342–6352. doi: 10.1523/JNEUROSCI.16-20-06342.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Kostic Tatjana S., Tomić Melanija, Andric Silvana A., Stojilkovic Stanko S. Calcium-independent and cAMP-dependent modulation of soluble guanylyl cyclase activity by G protein-coupled receptors in pituitary cells. J Biol Chem. 2002 Feb 26;277(19):16412–16418. doi: 10.1074/jbc.M112439200. [DOI] [PubMed] [Google Scholar]
  102. Kroeger K. M., Hanyaloglu A. C., Seeber R. M., Miles L. E., Eidne K. A. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J Biol Chem. 2001 Jan 18;276(16):12736–12743. doi: 10.1074/jbc.M011311200. [DOI] [PubMed] [Google Scholar]
  103. Laglia G., Zeiger M. A., Leipricht A., Caturegli P., Levine M. A., Kohn L. D., Saji M. Increased cyclic adenosine 3',5'-monophosphate inhibits G protein-coupled activation of phospholipase C in rat FRTL-5 thyroid cells. Endocrinology. 1996 Aug;137(8):3170–3176. doi: 10.1210/endo.137.8.8754735. [DOI] [PubMed] [Google Scholar]
  104. Laugwitz K. L., Allgeier A., Offermanns S., Spicher K., Van Sande J., Dumont J. E., Schultz G. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):116–120. doi: 10.1073/pnas.93.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Lawler O. A., Miggin S. M., Kinsella B. T. Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to G(s)-, to G(i)-, and to G(q)-coupled effector signaling. J Biol Chem. 2001 Jul 6;276(36):33596–33607. doi: 10.1074/jbc.M104434200. [DOI] [PubMed] [Google Scholar]
  106. Leaver Eric V., Pappone Pamela A. Beta-adrenergic potentiation of endoplasmic reticulum Ca(2+) release in brown fat cells. Am J Physiol Cell Physiol. 2002 May;282(5):C1016–C1024. doi: 10.1152/ajpcell.00204.2001. [DOI] [PubMed] [Google Scholar]
  107. Lee K., Deeds J. D., Chiba S., Un-No M., Bond A. T., Segre G. V. Parathyroid hormone induces sequential c-fos expression in bone cells in vivo: in situ localization of its receptor and c-fos messenger ribonucleic acids. Endocrinology. 1994 Jan;134(1):441–450. doi: 10.1210/endo.134.1.8275957. [DOI] [PubMed] [Google Scholar]
  108. Lee S. B., Shin S. H., Hepler J. R., Gilman A. G., Rhee S. G. Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits. J Biol Chem. 1993 Dec 5;268(34):25952–25957. [PubMed] [Google Scholar]
  109. Lee S. P., Xie Z., Varghese G., Nguyen T., O'Dowd B. F., George S. R. Oligomerization of dopamine and serotonin receptors. Neuropsychopharmacology. 2000 Oct;23(4 Suppl):S32–S40. doi: 10.1016/S0893-133X(00)00155-X. [DOI] [PubMed] [Google Scholar]
  110. Li Guangnan, Iyengar Ravi. Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta -catenin-regulated cell proliferation. Proc Natl Acad Sci U S A. 2002 Sep 18;99(20):13254–13259. doi: 10.1073/pnas.202355799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Linden D. J., Connor J. A. Long-term synaptic depression. Annu Rev Neurosci. 1995;18:319–357. doi: 10.1146/annurev.ne.18.030195.001535. [DOI] [PubMed] [Google Scholar]
  112. Litosch I. G-protein betagamma subunits antagonize protein kinase C-dependent phosphorylation and inhibition of phospholipase C-beta1. Biochem J. 1997 Sep 15;326(Pt 3):701–707. doi: 10.1042/bj3260701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Liu C. Y., Sturek M. Attenuation of endothelin-1-induced calcium response by tyrosine kinase inhibitors in vascular smooth muscle cells. Am J Physiol. 1996 Jun;270(6 Pt 1):C1825–C1833. doi: 10.1152/ajpcell.1996.270.6.C1825. [DOI] [PubMed] [Google Scholar]
  114. Liu Y. J., Grapengiesser E., Gylfe E., Hellman B. Crosstalk between the cAMP and inositol trisphosphate-signalling pathways in pancreatic beta-cells. Arch Biochem Biophys. 1996 Oct 15;334(2):295–302. doi: 10.1006/abbi.1996.0458. [DOI] [PubMed] [Google Scholar]
  115. Loomis-Husselbee J. W., Cullen P. J., Dreikausen U. E., Irvine R. F., Dawson A. P. Synergistic effects of inositol 1,3,4,5-tetrakisphosphate on inositol 2,4,5-triphosphate-stimulated Ca2+ release do not involve direct interaction of inositol 1,3,4,5-tetrakisphosphate with inositol triphosphate-binding sites. Biochem J. 1996 Mar 15;314(Pt 3):811–816. doi: 10.1042/bj3140811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Luo X., Popov S., Bera A. K., Wilkie T. M., Muallem S. RGS proteins provide biochemical control of agonist-evoked [Ca2+]i oscillations. Mol Cell. 2001 Mar;7(3):651–660. doi: 10.1016/s1097-2765(01)00211-8. [DOI] [PubMed] [Google Scholar]
  117. Maggio R., Barbier P., Colelli A., Salvadori F., Demontis G., Corsini G. U. G protein-linked receptors: pharmacological evidence for the formation of heterodimers. J Pharmacol Exp Ther. 1999 Oct;291(1):251–257. [PubMed] [Google Scholar]
  118. Maier U., Babich A., Macrez N., Leopoldt D., Gierschik P., Illenberger D., Nurnberg B. Gbeta 5gamma 2 is a highly selective activator of phospholipid-dependent enzymes. J Biol Chem. 2000 May 5;275(18):13746–13754. doi: 10.1074/jbc.275.18.13746. [DOI] [PubMed] [Google Scholar]
  119. Megson A. C., Dickenson J. M., Townsend-Nicholson A., Hill S. J. Synergy between the inositol phosphate responses to transfected human adenosine A1-receptors and constitutive P2-purinoceptors in CHO-K1 cells. Br J Pharmacol. 1995 Aug;115(8):1415–1424. doi: 10.1111/j.1476-5381.1995.tb16632.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Mellado M., Rodríguez-Frade J. M., Vila-Coro A. J., Fernández S., Martín de Ana A., Jones D. R., Torán J. L., Martínez-A C. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 2001 May 15;20(10):2497–2507. doi: 10.1093/emboj/20.10.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Mistry R., Golding N., Challiss R. A. Regulation of phosphoinositide turnover in neonatal rat cerebral cortex by group I- and II- selective metabotropic glutamate receptor agonists. Br J Pharmacol. 1998 Feb;123(3):581–589. doi: 10.1038/sj.bjp.0701626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Montero M., Alvarez J., Scheenen W. J., Rizzuto R., Meldolesi J., Pozzan T. Ca2+ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca2+] subcompartments in intact HeLa cells. J Cell Biol. 1997 Nov 3;139(3):601–611. doi: 10.1083/jcb.139.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Moritz A., De Graan P. N., Gispen W. H., Wirtz K. W. Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem. 1992 Apr 15;267(11):7207–7210. [PubMed] [Google Scholar]
  124. Murthy K. S., Coy D. H., Makhlouf G. M. Somatostatin receptor-mediated signaling in smooth muscle. Activation of phospholipase C-beta3 by Gbetagamma and inhibition of adenylyl cyclase by Galphai1 and Galphao. J Biol Chem. 1996 Sep 20;271(38):23458–23463. doi: 10.1074/jbc.271.38.23458. [DOI] [PubMed] [Google Scholar]
  125. Nakano H., Furuya K., Yamagishi S. Synergistic effects of ATP on oxytocin-induced intracellular Ca2+ response in mouse mammary myoepithelial cells. Pflugers Arch. 2001 Apr;442(1):57–63. doi: 10.1007/s004240100521. [DOI] [PubMed] [Google Scholar]
  126. Nicoletti F., Casabona G., Genazzani A. A., L'Episcopo M. R., Shinozaki H. (2s,1'R,2'R,3'R)-2-(2,3-Dicarboxycyclopropyl) glycine enhances quisqualate-stimulated inositol phospholipid hydrolysis in hippocampal slices. Eur J Pharmacol. 1993 May 15;245(3):297–298. doi: 10.1016/0922-4106(93)90111-l. [DOI] [PubMed] [Google Scholar]
  127. Nunn D. L., Taylor C. W. Luminal Ca2+ increases the sensitivity of Ca2+ stores to inositol 1,4,5-trisphosphate. Mol Pharmacol. 1992 Jan;41(1):115–119. [PubMed] [Google Scholar]
  128. Ogata T., Nakamura Y., Tsuji K., Shibata T., Kataoka K., Schubert P. Adenosine enhances intracellular Ca2+ mobilization in conjunction with metabotropic glutamate receptor activation by t-ACPD in cultured hippocampal astrocytes. Neurosci Lett. 1994 Mar 28;170(1):5–8. doi: 10.1016/0304-3940(94)90225-9. [DOI] [PubMed] [Google Scholar]
  129. Okajima F., Kondo Y. Synergism in cytosolic Ca2+ mobilization between bradykinin and agonists for pertussis toxin-sensitive G-protein-coupled receptors in NG 108-15 cells. FEBS Lett. 1992 Apr 20;301(2):223–226. doi: 10.1016/0014-5793(92)81252-h. [DOI] [PubMed] [Google Scholar]
  130. Okajima F., Tomura H., Kondo Y. Enkephalin activates the phospholipase C/Ca2+ system through cross-talk between opioid receptors and P2-purinergic or bradykinin receptors in NG 108-15 cells. A permissive role for pertussis toxin-sensitive G-proteins. Biochem J. 1993 Feb 15;290(Pt 1):241–247. doi: 10.1042/bj2900241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Park D., Jhon D. Y., Lee C. W., Ryu S. H., Rhee S. G. Removal of the carboxyl-terminal region of phospholipase C-beta 1 by calpain abolishes activation by G alpha q. J Biol Chem. 1993 Feb 15;268(5):3710–3714. [PubMed] [Google Scholar]
  132. Patel S., Robb-Gaspers L. D., Stellato K. A., Shon M., Thomas A. P. Coordination of calcium signalling by endothelial-derived nitric oxide in the intact liver. Nat Cell Biol. 1999 Dec;1(8):467–471. doi: 10.1038/70249. [DOI] [PubMed] [Google Scholar]
  133. Paulssen R. H., Woodson J., Liu Z., Ross E. M. Carboxyl-terminal fragments of phospholipase C-beta1 with intrinsic Gq GTPase-activating protein (GAP) activity. J Biol Chem. 1996 Oct 25;271(43):26622–26629. doi: 10.1074/jbc.271.43.26622. [DOI] [PubMed] [Google Scholar]
  134. Pittner R. A., Fain J. N. Exposure of cultured hepatocytes to cyclic AMP enhances the vasopressin-mediated stimulation of inositol phosphate production. Biochem J. 1989 Jan 15;257(2):455–460. doi: 10.1042/bj2570455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Popov S. G., Krishna U. M., Falck J. R., Wilkie T. M. Ca2+/Calmodulin reverses phosphatidylinositol 3,4, 5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity. J Biol Chem. 2000 Jun 23;275(25):18962–18968. doi: 10.1074/jbc.M001128200. [DOI] [PubMed] [Google Scholar]
  136. Quinson N., Miolan J. P., Niel J. P. Muscarinic receptor activation is a prerequisite for the endogenous release of nitric oxide modulating nicotinic transmission within the coeliac ganglion in the rabbit. Neuroscience. 2000;95(4):1129–1138. doi: 10.1016/s0306-4522(99)00518-7. [DOI] [PubMed] [Google Scholar]
  137. Quitterer U., Lohse M. J. Crosstalk between Galpha(i)- and Galpha(q)-coupled receptors is mediated by Gbetagamma exchange. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10626–10631. doi: 10.1073/pnas.96.19.10626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Rasmussen H., Isales C., Ganesan S., Calle R., Zawalich W. Ca(2+)-cyclic AMP interactions in sustained cellular responses. Ciba Found Symp. 1992;164:98–112. [PubMed] [Google Scholar]
  139. Rasmussen H., Kelley G., Douglas J. S. Interactions between Ca2+ and cAMP messenger system in regulation of airway smooth muscle contraction. Am J Physiol. 1990 Jun;258(6 Pt 1):L279–L288. doi: 10.1152/ajplung.1990.258.6.L279. [DOI] [PubMed] [Google Scholar]
  140. Rhee S. G. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281–312. doi: 10.1146/annurev.biochem.70.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Rocheville M., Lange D. C., Kumar U., Patel S. C., Patel R. C., Patel Y. C. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science. 2000 Apr 7;288(5463):154–157. doi: 10.1126/science.288.5463.154. [DOI] [PubMed] [Google Scholar]
  142. Rocheville M., Lange D. C., Kumar U., Sasi R., Patel R. C., Patel Y. C. Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem. 2000 Mar 17;275(11):7862–7869. doi: 10.1074/jbc.275.11.7862. [DOI] [PubMed] [Google Scholar]
  143. Rodríguez-Frade J. M., Vila-Coro A. J., de Ana A. M., Albar J. P., Martínez-A C., Mellado M. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3628–3633. doi: 10.1073/pnas.96.7.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Rooney T. A., Joseph S. K., Queen C., Thomas A. P. Cyclic GMP induces oscillatory calcium signals in rat hepatocytes. J Biol Chem. 1996 Aug 16;271(33):19817–19825. doi: 10.1074/jbc.271.33.19817. [DOI] [PubMed] [Google Scholar]
  145. Ross E. M., Wilkie T. M. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem. 2000;69:795–827. doi: 10.1146/annurev.biochem.69.1.795. [DOI] [PubMed] [Google Scholar]
  146. Rubin R. P., Adolf M. A. Cyclic AMP regulation of calcium mobilization and amylase release from isolated permeabilized rat parotid cells. J Pharmacol Exp Ther. 1994 Feb;268(2):600–606. [PubMed] [Google Scholar]
  147. Rümenapp U., Schmidt M., Olesch S., Ott S., Eichel-Streiber C. V., Jakobs K. H. Tyrosine-phosphorylation-dependent and rho-protein-mediated control of cellular phosphatidylinositol 4,5-bisphosphate levels. Biochem J. 1998 Sep 15;334(Pt 3):625–631. doi: 10.1042/bj3340625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Santella L., Kyozuka K., Genazzani A. A., De Riso L., Carafoli E. Nicotinic acid adenine dinucleotide phosphate-induced Ca(2+) release. Interactions among distinct Ca(2+) mobilizing mechanisms in starfish oocytes. J Biol Chem. 2000 Mar 24;275(12):8301–8306. doi: 10.1074/jbc.275.12.8301. [DOI] [PubMed] [Google Scholar]
  149. Scarselli M., Novi F., Schallmach E., Lin R., Baragli A., Colzi A., Griffon N., Corsini G. U., Sokoloff P., Levenson R. D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J Biol Chem. 2001 May 23;276(32):30308–30314. doi: 10.1074/jbc.M102297200. [DOI] [PubMed] [Google Scholar]
  150. Schmidt M., Bienek C., Rümenapp U., Zhang C., Lümmen G., Jakobs K. H., Just I., Aktories K., Moos M., von Eichel-Streiber C. A role for Rho in receptor- and G protein-stimulated phospholipase C. Reduction in phosphatidylinositol 4,5-bisphosphate by Clostridium difficile toxin B. Naunyn Schmiedebergs Arch Pharmacol. 1996 Jul;354(2):87–94. doi: 10.1007/BF00178707. [DOI] [PubMed] [Google Scholar]
  151. Schmidt M., Frings M., Mono M. L., Guo Y., Weernink P. A., Evellin S., Han L., Jakobs K. H. G protein-coupled receptor-induced sensitization of phospholipase C stimulation by receptor tyrosine kinases. J Biol Chem. 2000 Oct 20;275(42):32603–32610. doi: 10.1074/jbc.M004784200. [DOI] [PubMed] [Google Scholar]
  152. Schmidt M., Lohmann B., Hammer K., Haupenthal S., Nehls M. V., Jakobs K. H. Gi- and protein kinase C-mediated heterologous potentiation of phospholipase C signaling by G protein-coupled receptors. Mol Pharmacol. 1998 Jun;53(6):1139–1148. [PubMed] [Google Scholar]
  153. Schmidt M., Nehls C., Rümenapp U., Jakobs K. H. m3 Muscarinic receptor-induced and Gi-mediated heterologous potentiation of phospholipase C stimulation: role of phosphoinositide synthesis. Mol Pharmacol. 1996 Oct;50(4):1038–1046. [PubMed] [Google Scholar]
  154. Schoepp D. D., Johnson B. G., Monn J. A. (1 S,3 R)-1-aminocyclopentane-1,3-dicarboxylic acid-induced increases in cyclic AMP formation in the neonatal rat hippocampus are mediated by a synergistic interaction between phosphoinositide- and inhibitory cyclic AMP-coupled mGluRs. J Neurochem. 1996 May;66(5):1981–1985. doi: 10.1046/j.1471-4159.1996.66051981.x. [DOI] [PubMed] [Google Scholar]
  155. Schoepp D. D., Salhoff C. R., Wright R. A., Johnson B. G., Burnett J. P., Mayne N. G., Belagaje R., Wu S., Monn J. A. The novel metabotropic glutamate receptor agonist 2R,4R-APDC potentiates stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5-dihydroxyphenylglycine: evidence for a synergistic interaction between group 1 and group 2 receptors. Neuropharmacology. 1996;35(12):1661–1672. doi: 10.1016/s0028-3908(96)00121-9. [DOI] [PubMed] [Google Scholar]
  156. Selbie L. A., King N. V., Dickenson J. M., Hill S. J. Role of G-protein beta gamma subunits in the augmentation of P2Y2 (P2U)receptor-stimulated responses by neuropeptide Y Y1 Gi/o-coupled receptors. Biochem J. 1997 Nov 15;328(Pt 1):153–158. doi: 10.1042/bj3280153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Shah B. H., Siddiqui A., Qureshi K. A., Khan M., Rafi S., Ujan V. A., Yakoob M. Y., Yaqub Y., Rasheed H., Saeed S. A. Co-activation of Gi and Gq proteins exerts synergistic effect on human platelet aggregation through activation of phospholipase C and Ca2+ signalling pathways. Exp Mol Med. 1999 Mar 31;31(1):42–46. doi: 10.1038/emm.1999.7. [DOI] [PubMed] [Google Scholar]
  158. Short A. D., Taylor C. W. Parathyroid hormone controls the size of the intracellular Ca(2+) stores available to receptors linked to inositol trisphosphate formation. J Biol Chem. 2000 Jan 21;275(3):1807–1813. doi: 10.1074/jbc.275.3.1807. [DOI] [PubMed] [Google Scholar]
  159. Short A. D., Winston G. P., Taylor C. W. Different receptors use inositol trisphosphate to mobilize Ca(2+) from different intracellular pools. Biochem J. 2000 Nov 1;351(Pt 3):683–686. [PMC free article] [PubMed] [Google Scholar]
  160. Singer Alex U., Waldo Gary L., Harden T. Kendall, Sondek John. A unique fold of phospholipase C-beta mediates dimerization and interaction with G alpha q. Nat Struct Biol. 2002 Jan;9(1):32–36. doi: 10.1038/nsb731. [DOI] [PubMed] [Google Scholar]
  161. Smith C. D., Chang K. J. Regulation of brain phosphatidylinositol-4-phosphate kinase by GTP analogues. A potential role for guanine nucleotide regulatory proteins. J Biol Chem. 1989 Feb 25;264(6):3206–3210. [PubMed] [Google Scholar]
  162. Smith J. A., Davis C. L., Burgess G. M. Prostaglandin E2-induced sensitization of bradykinin-evoked responses in rat dorsal root ganglion neurons is mediated by cAMP-dependent protein kinase A. Eur J Neurosci. 2000 Sep;12(9):3250–3258. doi: 10.1046/j.1460-9568.2000.00218.x. [DOI] [PubMed] [Google Scholar]
  163. Smith P. M., Harmer A. R., Letcher A. J., Irvine R. F. The effect of inositol 1,3,4,5-tetrakisphosphate on inositol trisphosphate-induced Ca2+ mobilization in freshly isolated and cultured mouse lacrimal acinar cells. Biochem J. 2000 Apr 1;347(Pt 1):77–82. [PMC free article] [PubMed] [Google Scholar]
  164. Smrcka A. V., Sternweis P. C. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J Biol Chem. 1993 May 5;268(13):9667–9674. [PubMed] [Google Scholar]
  165. Stein G. S., Lian J. B., Stein J. L., Van Wijnen A. J., Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiol Rev. 1996 Apr;76(2):593–629. doi: 10.1152/physrev.1996.76.2.593. [DOI] [PubMed] [Google Scholar]
  166. Stephens L., Jackson T. R., Hawkins P. T. Activation of phosphatidylinositol 4,5-bisphosphate supply by agonists and non-hydrolysable GTP analogues. Biochem J. 1993 Dec 1;296(Pt 2):481–488. doi: 10.1042/bj2960481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., Snyder S. H. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8747–8750. doi: 10.1073/pnas.85.22.8747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Tanimura A., Nezu A., Tojyo Y., Matsumoto Y. Isoproterenol potentiates alpha-adrenergic and muscarinic receptor-mediated Ca2+ response in rat parotid cells. Am J Physiol. 1999 Jun;276(6 Pt 1):C1282–C1287. doi: 10.1152/ajpcell.1999.276.6.C1282. [DOI] [PubMed] [Google Scholar]
  169. Tinel H., Cancela J. M., Mogami H., Gerasimenko J. V., Gerasimenko O. V., Tepikin A. V., Petersen O. H. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals. EMBO J. 1999 Sep 15;18(18):4999–5008. doi: 10.1093/emboj/18.18.4999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Tolloczko B., Tao F. C., Zacour M. E., Martin J. G. Tyrosine kinase-dependent calcium signaling in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2000 Jun;278(6):L1138–L1145. doi: 10.1152/ajplung.2000.278.6.L1138. [DOI] [PubMed] [Google Scholar]
  171. Tolloczko Barbara, Turkewitsch Petra, Choudry Sofia, Bisotto Sandra, Fixman Elizabeth D., Martin James G. Src modulates serotonin-induced calcium signaling by regulating phosphatidylinositol 4,5-bisphosphate. Am J Physiol Lung Cell Mol Physiol. 2002 Jun;282(6):L1305–L1313. doi: 10.1152/ajplung.00304.2001. [DOI] [PubMed] [Google Scholar]
  172. Tom Beril, Dendorfer Andreas, de Vries René, Saxena Pramod R., Jan Danser A. H. Bradykinin potentiation by ACE inhibitors: a matter of metabolism. Br J Pharmacol. 2002 Sep;137(2):276–284. doi: 10.1038/sj.bjp.0704862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Toms N. J., Roberts P. J. Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology. 1999 Oct;38(10):1511–1517. doi: 10.1016/s0028-3908(99)00090-8. [DOI] [PubMed] [Google Scholar]
  174. Tomura H., Itoh H., Sho K., Sato K., Nagao M., Ui M., Kondo Y., Okajima F. Betagamma subunits of pertussis toxin-sensitive G proteins mediate A1 adenosine receptor agonist-induced activation of phospholipase C in collaboration with thyrotropin. A novel stimulatory mechanism through the cross-talk of two types of receptors. J Biol Chem. 1997 Sep 12;272(37):23130–23137. doi: 10.1074/jbc.272.37.23130. [DOI] [PubMed] [Google Scholar]
  175. Tomura H., Okajima F., Kondo Y. Enkephalin induces Ca2+ mobilization in single cells of bradykinin-sensitized differentiated neuroblastoma hybridoma (NG108-15) cells. Neurosci Lett. 1992 Dec 14;148(1-2):93–96. doi: 10.1016/0304-3940(92)90812-l. [DOI] [PubMed] [Google Scholar]
  176. Tovey Stephen C., Goraya Tasmina A., Taylor Colin W. Parathyroid hormone increases the sensitivity of inositol trisphosphate receptors by a mechanism that is independent of cyclic AMP. Br J Pharmacol. 2003 Jan;138(1):81–90. doi: 10.1038/sj.bjp.0705011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Toyofuku T., Kurzydlowski K., Tada M., MacLennan D. H. Identification of regions in the Ca(2+)-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. J Biol Chem. 1993 Feb 5;268(4):2809–2815. [PubMed] [Google Scholar]
  178. Valdivia H. H., Kaplan J. H., Ellis-Davies G. C., Lederer W. J. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science. 1995 Mar 31;267(5206):1997–2000. doi: 10.1126/science.7701323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Verjans B., De Smedt F., Lecocq R., Vanweyenberg V., Moreau C., Erneux C. Cloning and expression in Escherichia coli of a dog thyroid cDNA encoding a novel inositol 1,4,5-trisphosphate 5-phosphatase. Biochem J. 1994 May 15;300(Pt 1):85–90. doi: 10.1042/bj3000085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Vila-Coro A. J., Rodríguez-Frade J. M., Martín De Ana A., Moreno-Ortíz M. C., Martínez-A C., Mellado M. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 1999 Oct;13(13):1699–1710. [PubMed] [Google Scholar]
  181. Volpe P., Alderson-Lang B. H. Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release. II. Effect of cAMP-dependent protein kinase. Am J Physiol. 1990 Jun;258(6 Pt 1):C1086–C1091. doi: 10.1152/ajpcell.1990.258.6.C1086. [DOI] [PubMed] [Google Scholar]
  182. Wang S. S., Denk W., Häusser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci. 2000 Dec;3(12):1266–1273. doi: 10.1038/81792. [DOI] [PubMed] [Google Scholar]
  183. Wellner-Kienitz M. C., Bender K., Pott L. Overexpression of beta 1 and beta 2 adrenergic receptors in rat atrial myocytes. Differential coupling to G protein-gated inward rectifier K(+) channels via G(s) and G(i)/o. J Biol Chem. 2001 Aug 8;276(40):37347–37354. doi: 10.1074/jbc.M106234200. [DOI] [PubMed] [Google Scholar]
  184. Werry Tim D., Christie Mark I., Dainty Ian A., Wilkinson Graeme F., Willars Gary B. Ca(2+) signalling by recombinant human CXCR2 chemokine receptors is potentiated by P2Y nucleotide receptors in HEK cells. Br J Pharmacol. 2002 Mar;135(5):1199–1208. doi: 10.1038/sj.bjp.0704566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. White J. H., Wise A., Main M. J., Green A., Fraser N. J., Disney G. H., Barnes A. A., Emson P., Foord S. M., Marshall F. H. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature. 1998 Dec 17;396(6712):679–682. doi: 10.1038/25354. [DOI] [PubMed] [Google Scholar]
  186. Wilcke M., Nedergaard J. Alpha 1- and beta-adrenergic regulation of intracellular Ca2+ levels in brown adipocytes. Biochem Biophys Res Commun. 1989 Aug 30;163(1):292–300. doi: 10.1016/0006-291x(89)92134-7. [DOI] [PubMed] [Google Scholar]
  187. Willars G. B., Nahorski S. R., Challiss R. A. Differential regulation of muscarinic acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signaling in human neuroblastoma cells. J Biol Chem. 1998 Feb 27;273(9):5037–5046. doi: 10.1074/jbc.273.9.5037. [DOI] [PubMed] [Google Scholar]
  188. Willars G. B., Nahorski S. R. Heterologous desensitization of both phosphoinositide and Ca2+ signaling in SH-SY5Y neuroblastoma cells: a role for intracellular Ca2+ store depletion? Mol Pharmacol. 1995 Mar;47(3):509–516. [PubMed] [Google Scholar]
  189. Wilson H. L., Galione A. Differential regulation of nicotinic acid-adenine dinucleotide phosphate and cADP-ribose production by cAMP and cGMP. Biochem J. 1998 May 1;331(Pt 3):837–843. doi: 10.1042/bj3310837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Wilson K. M., Minneman K. P. Synergistic interactions between alpha 1- and alpha 2-adrenergic receptors in activating 3H-inositol phosphate formation in primary glial cell cultures. J Neurochem. 1991 Mar;56(3):953–960. doi: 10.1111/j.1471-4159.1991.tb02014.x. [DOI] [PubMed] [Google Scholar]
  191. Wing M. R., Houston D., Kelley G. G., Der C. J., Siderovski D. P., Harden T. K. Activation of phospholipase C-epsilon by heterotrimeric G protein betagamma-subunits. J Biol Chem. 2001 Oct 18;276(51):48257–48261. doi: 10.1074/jbc.C100574200. [DOI] [PubMed] [Google Scholar]
  192. Witcher D. R., Kovacs R. J., Schulman H., Cefali D. C., Jones L. R. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem. 1991 Jun 15;266(17):11144–11152. [PubMed] [Google Scholar]
  193. Wojcikiewicz R. J., Luo S. G. Phosphorylation of inositol 1,4,5-trisphosphate receptors by cAMP-dependent protein kinase. Type I, II, and III receptors are differentially susceptible to phosphorylation and are phosphorylated in intact cells. J Biol Chem. 1998 Mar 6;273(10):5670–5677. doi: 10.1074/jbc.273.10.5670. [DOI] [PubMed] [Google Scholar]
  194. Wotta D. R., Parsons A. M., Hu J., Grande A. W., El-Fakahany E. E. M1 muscarinic receptors stimulate rapid and prolonged phases of neuronal nitric oxide synthase activity: involvement of different calcium pools. J Neurochem. 1998 Aug;71(2):487–497. doi: 10.1046/j.1471-4159.1998.71020487.x. [DOI] [PubMed] [Google Scholar]
  195. Wu D. Q., Lee C. H., Rhee S. G., Simon M. I. Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem. 1992 Jan 25;267(3):1811–1817. [PubMed] [Google Scholar]
  196. Wu D., Jiang H., Katz A., Simon M. I. Identification of critical regions on phospholipase C-beta 1 required for activation by G-proteins. J Biol Chem. 1993 Feb 15;268(5):3704–3709. [PubMed] [Google Scholar]
  197. Wu D., Katz A., Simon M. I. Activation of phospholipase C beta 2 by the alpha and beta gamma subunits of trimeric GTP-binding protein. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5297–5301. doi: 10.1073/pnas.90.11.5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Xia S. L., Fain G. L., Farahbakhsh N. A. Synergistic rise in Ca2+ produced by somatostatin and acetylcholine in ciliary body epithelial cells. Exp Eye Res. 1997 Apr;64(4):627–635. doi: 10.1006/exer.1996.0269. [DOI] [PubMed] [Google Scholar]
  199. Xiao R. P., Ji X., Lakatta E. G. Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol. 1995 Feb;47(2):322–329. [PubMed] [Google Scholar]
  200. Yang C. M., Chien C. S., Wang C. C., Hsu Y. M., Chiu C. T., Lin C. C., Luo S. F., Hsiao L. D. Interleukin-1beta enhances bradykinin-induced phosphoinositide hydrolysis and Ca2+ mobilization in canine tracheal smooth-muscle cells: involvement of the Ras/Raf/mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway. Biochem J. 2001 Mar 1;354(Pt 2):439–446. doi: 10.1042/0264-6021:3540439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Yeo A., Samways D. S., Fowler C. E., Gunn-Moore F., Henderson G. Coincident signalling between the Gi/Go-coupled delta-opioid receptor and the Gq-coupled m3 muscarinic receptor at the level of intracellular free calcium in SH-SY5Y cells. J Neurochem. 2001 Mar;76(6):1688–1700. doi: 10.1046/j.1471-4159.2001.00185.x. [DOI] [PubMed] [Google Scholar]
  202. Yoon S. H., Lo T. M., Loh H. H., Thayer S. A. Delta-opioid-induced liberation of Gbetagamma mobilizes Ca2+ stores in NG108-15 cells. Mol Pharmacol. 1999 Nov;56(5):902–908. doi: 10.1124/mol.56.5.902. [DOI] [PubMed] [Google Scholar]
  203. Yoshioka K., Saitoh O., Nakata H. Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci U S A. 2001 Jun 5;98(13):7617–7622. doi: 10.1073/pnas.121587098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Yue C., Dodge K. L., Weber G., Sanborn B. M. Phosphorylation of serine 1105 by protein kinase A inhibits phospholipase Cbeta3 stimulation by Galphaq. J Biol Chem. 1998 Jul 17;273(29):18023–18027. doi: 10.1074/jbc.273.29.18023. [DOI] [PubMed] [Google Scholar]
  205. Yue C., Ku C. Y., Liu M., Simon M. I., Sanborn B. M. Molecular mechanism of the inhibition of phospholipase C beta 3 by protein kinase C. J Biol Chem. 2000 Sep 29;275(39):30220–30225. doi: 10.1074/jbc.M004276200. [DOI] [PubMed] [Google Scholar]
  206. Zamah A. Musa, Delahunty Martha, Luttrell Louis M., Lefkowitz Robert J. Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. J Biol Chem. 2002 Jun 12;277(34):31249–31256. doi: 10.1074/jbc.M202753200. [DOI] [PubMed] [Google Scholar]
  207. Zeng W., Xu X., Muallem S. Gbetagamma transduces [Ca2+]i oscillations and Galphaq a sustained response during stimulation of pancreatic acinar cells with [Ca2+]i-mobilizing agonists. J Biol Chem. 1996 Aug 2;271(31):18520–18526. doi: 10.1074/jbc.271.31.18520. [DOI] [PubMed] [Google Scholar]
  208. Zhang C., Schmidt M., von Eichei-Streiber C., Jakobs K. H. Inhibition by toxin B of inositol phosphate formation induced by G protein-coupled and tyrosine kinase receptors in N1E-115 neuroblastoma cells: involvement of Rho proteins. Mol Pharmacol. 1996 Oct;50(4):864–869. [PubMed] [Google Scholar]
  209. Zhu X., Birnbaumer L. G protein subunits and the stimulation of phospholipase C by Gs-and Gi-coupled receptors: Lack of receptor selectivity of Galpha(16) and evidence for a synergic interaction between Gbeta gamma and the alpha subunit of a receptor activated G protein. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2827–2831. doi: 10.1073/pnas.93.7.2827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Zhu X., Gilbert S., Birnbaumer M., Birnbaumer L. Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density. Mol Pharmacol. 1994 Sep;46(3):460–469. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES