Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 1;374(Pt 2):481–488. doi: 10.1042/BJ20030280

Polyamines reverse non-steroidal anti-inflammatory drug-induced toxicity in human colorectal cancer cells.

Alun Hughes 1, Nicholas I Smith 1, Heather M Wallace 1
PMCID: PMC1223611  PMID: 12793857

Abstract

Naproxen, sulindac and salicylate, three NSAIDs (non-steroidal anti-inflammatory drugs), were cytotoxic to human colorectal cancer cells in culture. Toxicity was accompanied by significant depletion of intracellular polyamine content. Inhibition of ornithine decarboxylase (the first enzyme of the polyamine biosynthetic pathway), induction of polyamine oxidase and spermidine/spermine N(1)-acetyltransferase (the enzymes responsible for polyamine catabolism) and induction of polyamine export all contributed to the decreased intracellular polyamine content. Morphological examination of the cells showed typical signs of apoptosis, and this was confirmed by DNA fragmentation and measurement of caspase-3-like activity. Re-addition of spermidine to the cells partially prevented apoptosis and recovered the cell number. Thus polyamines appear to be an integral part of the signalling pathway mediating NSAID toxicity in human colorectal cancer cells, and may therefore also be important in cancer chemoprevention in humans.

Full Text

The Full Text of this article is available as a PDF (140.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auvinen M. Cell transformation, invasion, and angiogenesis: a regulatory role for ornithine decarboxylase and polyamines? J Natl Cancer Inst. 1997 Apr 16;89(8):533–537. doi: 10.1093/jnci/89.8.533. [DOI] [PubMed] [Google Scholar]
  2. Auvinen M., Paasinen A., Andersson L. C., Hölttä E. Ornithine decarboxylase activity is critical for cell transformation. Nature. 1992 Nov 26;360(6402):355–358. doi: 10.1038/360355a0. [DOI] [PubMed] [Google Scholar]
  3. Bellosillo B., Piqué M., Barragán M., Castaño E., Villamor N., Colomer D., Montserrat E., Pons G., Gil J. Aspirin and salicylate induce apoptosis and activation of caspases in B-cell chronic lymphocytic leukemia cells. Blood. 1998 Aug 15;92(4):1406–1414. [PubMed] [Google Scholar]
  4. Bond J. H. Evolving strategies for colonoscopic management of patients with colorectal polyps. Endoscopy. 1995 Jan;27(1):38–61. doi: 10.1055/s-2007-1005630. [DOI] [PubMed] [Google Scholar]
  5. Cashman J. N. The mechanisms of action of NSAIDs in analgesia. Drugs. 1996;52 (Suppl 5):13–23. doi: 10.2165/00003495-199600525-00004. [DOI] [PubMed] [Google Scholar]
  6. Chan B. S., Satriano J. A., Pucci M., Schuster V. L. Mechanism of prostaglandin E2 transport across the plasma membrane of HeLa cells and Xenopus oocytes expressing the prostaglandin transporter "PGT". J Biol Chem. 1998 Mar 20;273(12):6689–6697. doi: 10.1074/jbc.273.12.6689. [DOI] [PubMed] [Google Scholar]
  7. Clark C. R., McMillian C. L., Hoke J. F., Campagna K. D., Ravis W. R. Liquid chromatographic determination of sulindac and metabolites in serum. J Chromatogr Sci. 1987 Jun;25(6):247–251. doi: 10.1093/chromsci/25.6.247. [DOI] [PubMed] [Google Scholar]
  8. Coleman C. S., Pegg A. E. Assay of mammalian ornithine decarboxylase activity using [14C]ornithine. Methods Mol Biol. 1998;79:41–44. doi: 10.1385/0-89603-448-8:41. [DOI] [PubMed] [Google Scholar]
  9. Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986 May 22;89(2):271–277. doi: 10.1016/0022-1759(86)90368-6. [DOI] [PubMed] [Google Scholar]
  10. Elder D. J., Hague A., Hicks D. J., Paraskeva C. Differential growth inhibition by the aspirin metabolite salicylate in human colorectal tumor cell lines: enhanced apoptosis in carcinoma and in vitro-transformed adenoma relative to adenoma relative to adenoma cell lines. Cancer Res. 1996 May 15;56(10):2273–2276. [PubMed] [Google Scholar]
  11. Elder D. J., Paraskeva C. Are aspirin and other non-steroidal anti-inflammatory drugs effective in the prevention and treatment of colorectal cancer? Lancet. 1996 Aug 17;348(9025):485–485. doi: 10.1016/S0140-6736(05)64591-6. [DOI] [PubMed] [Google Scholar]
  12. Gala Manish, Sun Ronggai, Yang Vincent W. Inhibition of cell transformation by sulindac sulfide is confined to specific oncogenic pathways. Cancer Lett. 2002 Jan 10;175(1):89–94. doi: 10.1016/s0304-3835(01)00716-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giardiello F. M., Hamilton S. R., Hylind L. M., Yang V. W., Tamez P., Casero R. A., Jr Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res. 1997 Jan 15;57(2):199–201. [PubMed] [Google Scholar]
  14. Goldberg Y., Nassif I. I., Pittas A., Tsai L. L., Dynlacht B. D., Rigas B., Shiff S. J. The anti-proliferative effect of sulindac and sulindac sulfide on HT-29 colon cancer cells: alterations in tumor suppressor and cell cycle-regulatory proteins. Oncogene. 1996 Feb 15;12(4):893–901. [PubMed] [Google Scholar]
  15. Han E. K., Arber N., Yamamoto H., Lim J. T., Delohery T., Pamukcu R., Piazza G. A., Xing W. Q., Weinstein I. B. Effects of sulindac and its metabolites on growth and apoptosis in human mammary epithelial and breast carcinoma cell lines. Breast Cancer Res Treat. 1998 Apr;48(3):195–203. doi: 10.1023/a:1005924730450. [DOI] [PubMed] [Google Scholar]
  16. Hanif R., Pittas A., Feng Y., Koutsos M. I., Qiao L., Staiano-Coico L., Shiff S. I., Rigas B. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol. 1996 Jul 26;52(2):237–245. doi: 10.1016/0006-2952(96)00181-5. [DOI] [PubMed] [Google Scholar]
  17. Hayashi S., Murakami Y. Rapid and regulated degradation of ornithine decarboxylase. Biochem J. 1995 Feb 15;306(Pt 1):1–10. doi: 10.1042/bj3060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huang Y., He Q., Hillman M. J., Rong R., Sheikh M. S. Sulindac sulfide-induced apoptosis involves death receptor 5 and the caspase 8-dependent pathway in human colon and prostate cancer cells. Cancer Res. 2001 Sep 15;61(18):6918–6924. [PubMed] [Google Scholar]
  19. Igarashi K., Kashiwagi K. Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun. 2000 May 19;271(3):559–564. doi: 10.1006/bbrc.2000.2601. [DOI] [PubMed] [Google Scholar]
  20. Iizaka Masayoshi, Furukawa Yoichi, Tsunoda Tatsuhiko, Akashi Hirofumi, Ogawa Michio, Nakamura Yusuke. Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498–512. doi: 10.1006/bbrc.2002.6648. [DOI] [PubMed] [Google Scholar]
  21. Kingsnorth A. N., Lumsden A. B., Wallace H. M. Polyamines in colorectal cancer. Br J Surg. 1984 Oct;71(10):791–794. doi: 10.1002/bjs.1800711019. [DOI] [PubMed] [Google Scholar]
  22. Kingsnorth A. N., Russell W. E., McCann P. P., Diekema K. A., Malt R. A. Effects of alpha-difluoromethylornithine and 5-fluorouracil on the proliferation of a human colon adenocarcinoma cell line. Cancer Res. 1983 Sep;43(9):4035–4038. [PubMed] [Google Scholar]
  23. Klampfer L., Cammenga J., Wisniewski H. G., Nimer S. D. Sodium salicylate activates caspases and induces apoptosis of myeloid leukemia cell lines. Blood. 1999 Apr 1;93(7):2386–2394. [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lapidus R. G., Sokolove P. M. The mitochondrial permeability transition. Interactions of spermine, ADP, and inorganic phosphate. J Biol Chem. 1994 Jul 22;269(29):18931–18936. [PubMed] [Google Scholar]
  26. Luk G. D., Baylin S. B. Ornithine decarboxylase as a biologic marker in familial colonic polyposis. N Engl J Med. 1984 Jul 12;311(2):80–83. doi: 10.1056/NEJM198407123110202. [DOI] [PubMed] [Google Scholar]
  27. Luk G. D., Casero R. A., Jr Polyamines in normal and cancer cells. Adv Enzyme Regul. 1987;26:91–105. doi: 10.1016/0065-2571(87)90007-0. [DOI] [PubMed] [Google Scholar]
  28. Lupulescu A. Effect of prostaglandins on protein, RNA, DNA and collagen synthesis in experimental wounds. Prostaglandins. 1975 Oct;10(4):573–579. doi: 10.1016/s0090-6980(75)80003-7. [DOI] [PubMed] [Google Scholar]
  29. Lupulescu A. Prostaglandins, their inhibitors and cancer. Prostaglandins Leukot Essent Fatty Acids. 1996 Feb;54(2):83–94. doi: 10.1016/s0952-3278(96)90064-2. [DOI] [PubMed] [Google Scholar]
  30. Marton L. J., Pegg A. E. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol. 1995;35:55–91. doi: 10.1146/annurev.pa.35.040195.000415. [DOI] [PubMed] [Google Scholar]
  31. Meyskens F. L., Jr, Emerson S. S., Pelot D., Meshkinpour H., Shassetz L. R., Einspahr J., Alberts D. S., Gerner E. W. Dose de-escalation chemoprevention trial of alpha-difluoromethylornithine in patients with colon polyps. J Natl Cancer Inst. 1994 Aug 3;86(15):1122–1130. doi: 10.1093/jnci/86.15.1122. [DOI] [PubMed] [Google Scholar]
  32. Meyskens F. L., Jr, Gerner E. W. Development of difluoromethylornithine as a chemoprevention agent for the management of colon cancer. J Cell Biochem Suppl. 1995;22:126–131. doi: 10.1002/jcb.240590816. [DOI] [PubMed] [Google Scholar]
  33. Meyskens F. L., Jr, Gerner E. W., Emerson S., Pelot D., Durbin T., Doyle K., Lagerberg W. Effect of alpha-difluoromethylornithine on rectal mucosal levels of polyamines in a randomized, double-blinded trial for colon cancer prevention. J Natl Cancer Inst. 1998 Aug 19;90(16):1212–1218. doi: 10.1093/jnci/90.16.1212. [DOI] [PubMed] [Google Scholar]
  34. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  35. Pegg A. E., McCann P. P. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–C221. doi: 10.1152/ajpcell.1982.243.5.C212. [DOI] [PubMed] [Google Scholar]
  36. Piazza G. A., Alberts D. S., Hixson L. J., Paranka N. S., Li H., Finn T., Bogert C., Guillen J. M., Brendel K., Gross P. H. Sulindac sulfone inhibits azoxymethane-induced colon carcinogenesis in rats without reducing prostaglandin levels. Cancer Res. 1997 Jul 15;57(14):2909–2915. [PubMed] [Google Scholar]
  37. Raymondjean M., Bogdanovsky D., Bachner L., Kneip B., Schapira G. Regulation of messenger RNA by a ribonucleic factor in the presence of polyamines. FEBS Lett. 1977 Apr 15;76(2):311–315. doi: 10.1016/0014-5793(77)80175-0. [DOI] [PubMed] [Google Scholar]
  38. Rosenberg L., Palmer J. R., Zauber A. G., Warshauer M. E., Stolley P. D., Shapiro S. A hypothesis: nonsteroidal anti-inflammatory drugs reduce the incidence of large-bowel cancer. J Natl Cancer Inst. 1991 Mar 6;83(5):355–358. doi: 10.1093/jnci/83.5.355. [DOI] [PubMed] [Google Scholar]
  39. Rustenbeck I., Löptien D., Fricke K., Lenzen S., Reiter H. Polyamine modulation of mitochondrial calcium transport. II. Inhibition of mitochondrial permeability transition by aliphatic polyamines but not by aminoglucosides. Biochem Pharmacol. 1998 Oct 15;56(8):987–995. doi: 10.1016/s0006-2952(98)00233-0. [DOI] [PubMed] [Google Scholar]
  40. Seiler N., Knödgen B. High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr. 1980 Dec 12;221(2):227–235. doi: 10.1016/s0378-4347(00)84307-8. [DOI] [PubMed] [Google Scholar]
  41. Shantz L. M., Pegg A. E. Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res. 1994 May 1;54(9):2313–2316. [PubMed] [Google Scholar]
  42. Sheng H., Shao J., Morrow J. D., Beauchamp R. D., DuBois R. N. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998 Jan 15;58(2):362–366. [PubMed] [Google Scholar]
  43. Shiff S. J., Rigas B. Nonsteroidal anti-inflammatory drugs and colorectal cancer: evolving concepts of their chemopreventive actions. Gastroenterology. 1997 Dec;113(6):1992–1998. doi: 10.1016/s0016-5085(97)99999-6. [DOI] [PubMed] [Google Scholar]
  44. Smith W. L., DeWitt D. L., Garavito R. M. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69:145–182. doi: 10.1146/annurev.biochem.69.1.145. [DOI] [PubMed] [Google Scholar]
  45. Szewczyk Adam, Wojtczak Lech. Mitochondria as a pharmacological target. Pharmacol Rev. 2002 Mar;54(1):101–127. doi: 10.1124/pr.54.1.101. [DOI] [PubMed] [Google Scholar]
  46. Tassani V., Campagnolo M., Toninello A., Siliprandi D. The contribution of endogenous polyamines to the permeability transition of rat liver mitochondria. Biochem Biophys Res Commun. 1996 Sep 24;226(3):850–854. doi: 10.1006/bbrc.1996.1439. [DOI] [PubMed] [Google Scholar]
  47. Tatebe Shigeru, Sinicrope Frank A., Kuo M. Tien. Induction of multidrug resistance proteins MRP1 and MRP3 and gamma-glutamylcysteine synthetase gene expression by nonsteroidal anti-inflammatory drugs in human colon cancer cells. Biochem Biophys Res Commun. 2002 Feb 8;290(5):1427–1433. doi: 10.1006/bbrc.2002.6367. [DOI] [PubMed] [Google Scholar]
  48. Verma A. K., Boutwell R. K. Vitamin A acid (retinoic acid), a potent inhibitor of 12-O-tetradecanoyl-phorbol-13-acetate-induced ornithine decarboxylase activity in mouse epidermis. Cancer Res. 1977 Jul;37(7 Pt 1):2196–2201. [PubMed] [Google Scholar]
  49. Vujcic S., Halmekyto M., Diegelman P., Gan G., Kramer D. L., Janne J., Porter C. W. Effects of conditional overexpression of spermidine/spermine N1-acetyltransferase on polyamine pool dynamics, cell growth, and sensitivity to polyamine analogs. J Biol Chem. 2000 Dec 8;275(49):38319–38328. doi: 10.1074/jbc.M003270200. [DOI] [PubMed] [Google Scholar]
  50. Wallace H. M., Evans D. M. Measurement of spermidine/spermine N1-acetyltransferase activity. Methods Mol Biol. 1998;79:59–68. doi: 10.1385/0-89603-448-8:59. [DOI] [PubMed] [Google Scholar]
  51. Wallace H. M., Keir H. M. Excretion of polyamines from baby hamster kidney cells (BHK-21/C13: effect of infection with Herpes Simplex Virus Type 1. J Gen Virol. 1981 Oct;56(Pt 2):251–258. doi: 10.1099/0022-1317-56-2-251. [DOI] [PubMed] [Google Scholar]
  52. Wallace H. M., Mackarel A. J. Regulation of polyamine acetylation and efflux in human cancer cells. Biochem Soc Trans. 1998 Nov;26(4):571–575. doi: 10.1042/bst0260571. [DOI] [PubMed] [Google Scholar]
  53. Wallace H. M., Nuttall M. E., Robinson F. C. Acetylation of spermidine and methylglyoxal bis(guanylhydrazone) in baby-hamster kidney cells (BHK-21/C13). Biochem J. 1988 Jul 1;253(1):223–227. doi: 10.1042/bj2530223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Williams J. L., Borgo S., Hasan I., Castillo E., Traganos F., Rigas B. Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: implications for colon cancer chemoprevention. Cancer Res. 2001 Apr 15;61(8):3285–3289. [PubMed] [Google Scholar]
  55. Young M. R. Eicosanoids and the immunology of cancer. Cancer Metastasis Rev. 1994 Dec;13(3-4):337–348. doi: 10.1007/BF00666103. [DOI] [PubMed] [Google Scholar]
  56. Zapata J. M., Krajewska M., Krajewski S., Huang R. P., Takayama S., Wang H. G., Adamson E., Reed J. C. Expression of multiple apoptosis-regulatory genes in human breast cancer cell lines and primary tumors. Breast Cancer Res Treat. 1998 Jan;47(2):129–140. doi: 10.1023/a:1005940832123. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES