Abstract
Hsp90 (heat-shock protein 90) alone can act to prevent protein aggregation and promote refolding in vitro, but in vivo it operates as a part of a multichaperone complex, which includes Hsp70 and cohort proteins. Since the physiological function of Hsp90 is not yet fully understood, the development of specific antagonists might open new lines of investigation on the role of Hsp90. In an effort to discover Hsp90 antagonists, we screened many drugs and found that the anti-allergic drugs DSCG (disodium cromoglycate) and amlexanox target Hsp90. Both drugs were found to bind directly wild-type Hsp90 via the N- and C-terminal domains. Both drugs strongly suppressed the in vitro chaperone activity of native Hsp90 towards citrate synthase at 1.5-3.0 microM. Amlexanox suppressed C-terminal chaperone activity in vitro, but not N-terminal chaperone activity, and inhibited the association of cohort proteins, such as cyclophilin 40 and Hsp-organizing protein, to the C-terminal domain of Hsp90. These data suggest that amlexanox might disrupt the multichaperone complex, including Hsp70 and cohort proteins, both in vitro and in vivo. Although DSCG inhibited the in vitro chaperone activity of the N-terminal domain, the drug had no effect either on the C-terminal chaperone activity or on the association of the cohort proteins with the C-terminus of Hsp90. The physiological significance of these interactions in vivo remains to be investigated further, but undoubtedly must be taken into account when considering the pharmacology of anti-allergic drugs. DSCG and amlexanox may serve as useful tools for evaluating the physiological significance of Hsp90.
Full Text
The Full Text of this article is available as a PDF (311.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carrello A., Ingley E., Minchin R. F., Tsai S., Ratajczak T. The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90. J Biol Chem. 1999 Jan 29;274(5):2682–2689. doi: 10.1074/jbc.274.5.2682. [DOI] [PubMed] [Google Scholar]
- Chen S., Smith D. F. Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J Biol Chem. 1998 Dec 25;273(52):35194–35200. doi: 10.1074/jbc.273.52.35194. [DOI] [PubMed] [Google Scholar]
- Freeman B. C., Morimoto R. I. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 1996 Jun 17;15(12):2969–2979. [PMC free article] [PubMed] [Google Scholar]
- Garnier Cyrille, Lafitte Daniel, Tsvetkov Philipp O., Barbier Pascale, Leclerc-Devin Jocelyne, Millot Jean-Marc, Briand Claudette, Makarov Alexander A., Catelli Maria G., Peyrot Vincent. Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J Biol Chem. 2002 Jan 22;277(14):12208–12214. doi: 10.1074/jbc.M111874200. [DOI] [PubMed] [Google Scholar]
- Goebl M., Yanagida M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci. 1991 May;16(5):173–177. doi: 10.1016/0968-0004(91)90070-c. [DOI] [PubMed] [Google Scholar]
- Grenert J. P., Sullivan W. P., Fadden P., Haystead T. A., Clark J., Mimnaugh E., Krutzsch H., Ochel H. J., Schulte T. W., Sausville E. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem. 1997 Sep 19;272(38):23843–23850. doi: 10.1074/jbc.272.38.23843. [DOI] [PubMed] [Google Scholar]
- Höhfeld J., Minami Y., Hartl F. U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell. 1995 Nov 17;83(4):589–598. doi: 10.1016/0092-8674(95)90099-3. [DOI] [PubMed] [Google Scholar]
- Irmer H., Höhfeld J. Characterization of functional domains of the eukaryotic co-chaperone Hip. J Biol Chem. 1997 Jan 24;272(4):2230–2235. doi: 10.1074/jbc.272.4.2230. [DOI] [PubMed] [Google Scholar]
- Itoh H., Toyoshima I., Mizunuma H., Kobayashi R., Tashima Y. Three-step purification method and characterization of the bovine brain 90-kDa heat shock protein. Arch Biochem Biophys. 1990 Nov 1;282(2):290–296. doi: 10.1016/0003-9861(90)90119-j. [DOI] [PubMed] [Google Scholar]
- Jakob U., Lilie H., Meyer I., Buchner J. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem. 1995 Mar 31;270(13):7288–7294. doi: 10.1074/jbc.270.13.7288. [DOI] [PubMed] [Google Scholar]
- Johnson J. L., Beito T. G., Krco C. J., Toft D. O. Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes. Mol Cell Biol. 1994 Mar;14(3):1956–1963. doi: 10.1128/mcb.14.3.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
- Marcu M. G., Chadli A., Bouhouche I., Catelli M., Neckers L. M. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem. 2000 Nov 24;275(47):37181–37186. doi: 10.1074/jbc.M003701200. [DOI] [PubMed] [Google Scholar]
- Marcu M. G., Schulte T. W., Neckers L. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst. 2000 Feb 2;92(3):242–248. doi: 10.1093/jnci/92.3.242. [DOI] [PubMed] [Google Scholar]
- Morimoto R. I., Sarge K. D., Abravaya K. Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem. 1992 Nov 5;267(31):21987–21990. [PubMed] [Google Scholar]
- Owens-Grillo J. K., Czar M. J., Hutchison K. A., Hoffmann K., Perdew G. H., Pratt W. B. A model of protein targeting mediated by immunophilins and other proteins that bind to hsp90 via tetratricopeptide repeat domains. J Biol Chem. 1996 Jun 7;271(23):13468–13475. doi: 10.1074/jbc.271.23.13468. [DOI] [PubMed] [Google Scholar]
- Oyama Y., Shishibori T., Yamashita K., Naya T., Nakagiri S., Maeta H., Kobayashi R. Two distinct anti-allergic drugs, amlexanox and cromolyn, bind to the same kinds of calcium binding proteins, except calmodulin, in bovine lung extract. Biochem Biophys Res Commun. 1997 Nov 17;240(2):341–347. doi: 10.1006/bbrc.1997.7476. [DOI] [PubMed] [Google Scholar]
- Pratt W. B., Toft D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997 Jun;18(3):306–360. doi: 10.1210/edrv.18.3.0303. [DOI] [PubMed] [Google Scholar]
- Prodromou C., Roe S. M., O'Brien R., Ladbury J. E., Piper P. W., Pearl L. H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 1997 Jul 11;90(1):65–75. doi: 10.1016/s0092-8674(00)80314-1. [DOI] [PubMed] [Google Scholar]
- Radanyi C., Chambraud B., Baulieu E. E. The ability of the immunophilin FKBP59-HBI to interact with the 90-kDa heat shock protein is encoded by its tetratricopeptide repeat domain. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11197–11201. doi: 10.1073/pnas.91.23.11197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramsey A. J., Russell L. C., Whitt S. R., Chinkers M. Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90. J Biol Chem. 2000 Jun 9;275(23):17857–17862. doi: 10.1074/jbc.M001625200. [DOI] [PubMed] [Google Scholar]
- Ratajczak T., Carrello A. Cyclophilin 40 (CyP-40), mapping of its hsp90 binding domain and evidence that FKBP52 competes with CyP-40 for hsp90 binding. J Biol Chem. 1996 Feb 9;271(6):2961–2965. doi: 10.1074/jbc.271.6.2961. [DOI] [PubMed] [Google Scholar]
- Roe S. M., Prodromou C., O'Brien R., Ladbury J. E., Piper P. W., Pearl L. H. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem. 1999 Jan 28;42(2):260–266. doi: 10.1021/jm980403y. [DOI] [PubMed] [Google Scholar]
- Scheibel T., Buchner J. The Hsp90 complex--a super-chaperone machine as a novel drug target. Biochem Pharmacol. 1998 Sep 15;56(6):675–682. doi: 10.1016/s0006-2952(98)00120-8. [DOI] [PubMed] [Google Scholar]
- Scheibel T., Weikl T., Buchner J. Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1495–1499. doi: 10.1073/pnas.95.4.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheufler C., Brinker A., Bourenkov G., Pegoraro S., Moroder L., Bartunik H., Hartl F. U., Moarefi I. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell. 2000 Apr 14;101(2):199–210. doi: 10.1016/S0092-8674(00)80830-2. [DOI] [PubMed] [Google Scholar]
- Schulte T. W., Akinaga S., Murakata T., Agatsuma T., Sugimoto S., Nakano H., Lee Y. S., Simen B. B., Argon Y., Felts S. Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol Endocrinol. 1999 Sep;13(9):1435–1448. doi: 10.1210/mend.13.9.0339. [DOI] [PubMed] [Google Scholar]
- Smith D. F. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol. 1993 Nov;7(11):1418–1429. doi: 10.1210/mend.7.11.7906860. [DOI] [PubMed] [Google Scholar]
- Stancato L. F., Chow Y. H., Hutchison K. A., Perdew G. H., Jove R., Pratt W. B. Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J Biol Chem. 1993 Oct 15;268(29):21711–21716. [PubMed] [Google Scholar]
- Stebbins C. E., Russo A. A., Schneider C., Rosen N., Hartl F. U., Pavletich N. P. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997 Apr 18;89(2):239–250. doi: 10.1016/s0092-8674(00)80203-2. [DOI] [PubMed] [Google Scholar]
- Sullivan W. P., Toft D. O. Mutational analysis of hsp90 binding to the progesterone receptor. J Biol Chem. 1993 Sep 25;268(27):20373–20379. [PubMed] [Google Scholar]
- Wartmann M., Davis R. J. The native structure of the activated Raf protein kinase is a membrane-bound multi-subunit complex. J Biol Chem. 1994 Mar 4;269(9):6695–6701. [PubMed] [Google Scholar]
- Young J. C., Moarefi I., Hartl F. U. Hsp90: a specialized but essential protein-folding tool. J Cell Biol. 2001 Jul 23;154(2):267–273. doi: 10.1083/jcb.200104079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young J. C., Obermann W. M., Hartl F. U. Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90. J Biol Chem. 1998 Jul 17;273(29):18007–18010. doi: 10.1074/jbc.273.29.18007. [DOI] [PubMed] [Google Scholar]
- Young J. C., Schneider C., Hartl F. U. In vitro evidence that hsp90 contains two independent chaperone sites. FEBS Lett. 1997 Nov 24;418(1-2):139–143. doi: 10.1016/s0014-5793(97)01363-x. [DOI] [PubMed] [Google Scholar]