Abstract
A large portion of human kinesin superfamily protein member 4 (KIF4) is associated with the nuclear matrix during the interphase, while a small portion is found in the cytoplasm. During mitosis, it is associated with chromosomes throughout the entire process. In the present study, we identified a protein that interacts with KIF4 using a yeast two-hybrid system, co-immunoprecipitation and co-fractionation. This protein is BRCA2-associated factor 35 (BRAF35) containing a non-specific DNA binding high-mobility-group domain and a kinesin-like coiled-coil domain. It appeared that the interaction between the two proteins occurs through their respective alpha-helical coiled-coil domains. The co-fractionation experiment revealed that KIF4 and BRAF35 were present in a complex of approx. 540 kDa. The composition and biological significance of this complex should be studied further.
Full Text
The Full Text of this article is available as a PDF (255.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett J. G., Manning B. D., Snyder M. The Kar3p kinesin-related protein forms a novel heterodimeric structure with its associated protein Cik1p. Mol Biol Cell. 2000 Jul;11(7):2373–2385. doi: 10.1091/mbc.11.7.2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burkhard P., Stetefeld J., Strelkov S. V. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 2001 Feb;11(2):82–88. doi: 10.1016/s0962-8924(00)01898-5. [DOI] [PubMed] [Google Scholar]
- Cottingham F. R., Gheber L., Miller D. L., Hoyt M. A. Novel roles for saccharomyces cerevisiae mitotic spindle motors. J Cell Biol. 1999 Oct 18;147(2):335–350. doi: 10.1083/jcb.147.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evan G. I., Hancock D. C. Studies on the interaction of the human c-myc protein with cell nuclei: p62c-myc as a member of a discrete subset of nuclear proteins. Cell. 1985 Nov;43(1):253–261. doi: 10.1016/0092-8674(85)90030-3. [DOI] [PubMed] [Google Scholar]
- Hakimi Mohamed-Ali, Bochar Daniel A., Chenoweth Josh, Lane William S., Mandel Gail, Shiekhattar Ramin. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7420–7425. doi: 10.1073/pnas.112008599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heald R., Walczak C. E. Microtubule-based motor function in mitosis. Curr Opin Struct Biol. 1999 Apr;9(2):268–274. doi: 10.1016/s0959-440x(99)80037-2. [DOI] [PubMed] [Google Scholar]
- Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519–526. doi: 10.1126/science.279.5350.519. [DOI] [PubMed] [Google Scholar]
- Hirokawa N. Stirring up development with the heterotrimeric kinesin KIF3. Traffic. 2000 Jan;1(1):29–34. doi: 10.1034/j.1600-0854.2000.010105.x. [DOI] [PubMed] [Google Scholar]
- Kadonaga J. T. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell. 1998 Feb 6;92(3):307–313. doi: 10.1016/s0092-8674(00)80924-1. [DOI] [PubMed] [Google Scholar]
- Karcher Ryan L., Deacon Sean W., Gelfand Vladimir I. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 2002 Jan;12(1):21–27. doi: 10.1016/s0962-8924(01)02184-5. [DOI] [PubMed] [Google Scholar]
- Kozielski F., Sack S., Marx A., Thormählen M., Schönbrunn E., Biou V., Thompson A., Mandelkow E. M., Mandelkow E. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell. 1997 Dec 26;91(7):985–994. doi: 10.1016/s0092-8674(00)80489-4. [DOI] [PubMed] [Google Scholar]
- Lee Y. M., Lee S., Lee E., Shin H., Hahn H., Choi W., Kim W. Human kinesin superfamily member 4 is dominantly localized in the nuclear matrix and is associated with chromosomes during mitosis. Biochem J. 2001 Dec 15;360(Pt 3):549–556. doi: 10.1042/0264-6021:3600549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee Young Mi, Shin Hyunjin, Choi Wonja, Ahn Sungmin, Kim Wankee. Characterization of human SMARCE1r high-mobility-group protein. Biochim Biophys Acta. 2002 Apr 12;1574(3):269–276. doi: 10.1016/s0167-4781(01)00373-6. [DOI] [PubMed] [Google Scholar]
- Manning B. D., Barrett J. G., Wallace J. A., Granok H., Snyder M. Differential regulation of the Kar3p kinesin-related protein by two associated proteins, Cik1p and Vik1p. J Cell Biol. 1999 Mar 22;144(6):1219–1233. doi: 10.1083/jcb.144.6.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marmorstein L. Y., Kinev A. V., Chan G. K., Bochar D. A., Beniya H., Epstein J. A., Yen T. J., Shiekhattar R. A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell. 2001 Jan 26;104(2):247–257. doi: 10.1016/s0092-8674(01)00209-4. [DOI] [PubMed] [Google Scholar]
- Meluh P. B., Rose M. D. KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell. 1990 Mar 23;60(6):1029–1041. doi: 10.1016/0092-8674(90)90351-e. [DOI] [PubMed] [Google Scholar]
- Page B. D., Satterwhite L. L., Rose M. D., Snyder M. Localization of the Kar3 kinesin heavy chain-related protein requires the Cik1 interacting protein. J Cell Biol. 1994 Feb;124(4):507–519. doi: 10.1083/jcb.124.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pederson T. Half a century of "the nuclear matrix". Mol Biol Cell. 2000 Mar;11(3):799–805. doi: 10.1091/mbc.11.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rieder C. L., Salmon E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 1998 Aug;8(8):310–318. doi: 10.1016/s0962-8924(98)01299-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saunders W., Hornack D., Lengyel V., Deng C. The Saccharomyces cerevisiae kinesin-related motor Kar3p acts at preanaphase spindle poles to limit the number and length of cytoplasmic microtubules. J Cell Biol. 1997 Apr 21;137(2):417–431. doi: 10.1083/jcb.137.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekine Y., Okada Y., Noda Y., Kondo S., Aizawa H., Takemura R., Hirokawa N. A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally. J Cell Biol. 1994 Oct;127(1):187–201. doi: 10.1083/jcb.127.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998 Mar 1;12(5):599–606. doi: 10.1101/gad.12.5.599. [DOI] [PubMed] [Google Scholar]
- Sutton R. B., Fasshauer D., Jahn R., Brunger A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998 Sep 24;395(6700):347–353. doi: 10.1038/26412. [DOI] [PubMed] [Google Scholar]
- Verhey K. J., Rapoport T. A. Kinesin carries the signal. Trends Biochem Sci. 2001 Sep;26(9):545–550. doi: 10.1016/s0968-0004(01)01931-4. [DOI] [PubMed] [Google Scholar]
- Wang W., Côté J., Xue Y., Zhou S., Khavari P. A., Biggar S. R., Muchardt C., Kalpana G. V., Goff S. P., Yaniv M. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 1996 Oct 1;15(19):5370–5382. [PMC free article] [PubMed] [Google Scholar]