Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 1;374(Pt 2):559–565. doi: 10.1042/BJ20030474

The role of two novel regulatory sites in the activation of the cGMP-dependent protein kinase from Plasmodium falciparum.

Wensheng Deng 1, Asha Parbhu-Patel 1, David J Meyer 1, David A Baker 1
PMCID: PMC1223622  PMID: 12817987

Abstract

The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) uniquely contains three cGMP binding sites, but also has a 'degenerate' fourth site. The role of each cGMP-binding site in PfPKG activation remains unknown. We have analysed the effect of mutation of each cGMP-binding site (individually and in combination) on PfPKG activation in vitro. The most striking result was that mutation of cGMP site 3 resulted in a 10-49-fold increase in the K (a((cGMP))) value and a 45-55% decrease in maximal activity compared with wild-type. Mutations involving only cGMP-binding sites 1 and 2 had less effect on both the K (a((cGMP))) values and the maximal activities. These results suggest that, although all three cGMP-binding sites are involved in PfPKG activation, cGMP-binding site 3 has the greatest influence on activation. A mutation in the fourth, degenerate cGMP-binding site decreased PfPKG maximal activity by 40%, but did not change the K (a((cGMP))) value for the PfPKG mutant, suggesting that this site does not bind cGMP, but is required for full activation of PfPKG. The distinct activation properties of PfPKG from mammalian isoforms may be exploitable in the design of a parasite-specific inhibitor and development of a novel anti-malarial drug.

Full Text

The Full Text of this article is available as a PDF (217.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenhofen W., Ludwig J., Eismann E., Kraus W., Bönigk W., Kaupp U. B. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9868–9872. doi: 10.1073/pnas.88.21.9868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Corbin J. D., Døskeland S. O. Studies of two different intrachain cGMP-binding sites of cGMP-dependent protein kinase. J Biol Chem. 1983 Sep 25;258(18):11391–11397. [PubMed] [Google Scholar]
  4. Deng Wensheng, Baker David A. A novel cyclic GMP-dependent protein kinase is expressed in the ring stage of the Plasmodium falciparum life cycle. Mol Microbiol. 2002 Jun;44(5):1141–1151. doi: 10.1046/j.1365-2958.2002.02948.x. [DOI] [PubMed] [Google Scholar]
  5. Doerig Christian, Meijer Laurent, Mottram Jeremy C. Protein kinases as drug targets in parasitic protozoa. Trends Parasitol. 2002 Aug;18(8):366–371. doi: 10.1016/s1471-4922(02)02321-8. [DOI] [PubMed] [Google Scholar]
  6. Donald Robert G. K., Liberator Paul A. Molecular characterization of a coccidian parasite cGMP dependent protein kinase. Mol Biochem Parasitol. 2002 Apr 9;120(2):165–175. doi: 10.1016/s0166-6851(01)00451-0. [DOI] [PubMed] [Google Scholar]
  7. Feil R., Kellermann J., Hofmann F. Functional cGMP-dependent protein kinase is phosphorylated in its catalytic domain at threonine-516. Biochemistry. 1995 Oct 10;34(40):13152–13158. doi: 10.1021/bi00040a029. [DOI] [PubMed] [Google Scholar]
  8. Gardner Malcolm J., Hall Neil, Fung Eula, White Owen, Berriman Matthew, Hyman Richard W., Carlton Jane M., Pain Arnab, Nelson Karen E., Bowman Sharen. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002 Oct 3;419(6906):498–511. doi: 10.1038/nature01097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gurnett Anne M., Liberator Paul A., Dulski Paula M., Salowe Scott P., Donald Robert G. K., Anderson Jennifer W., Wiltsie Judyann, Diaz Carmen A., Harris Georgiana, Chang Ben. Purification and molecular characterization of cGMP-dependent protein kinase from Apicomplexan parasites. A novel chemotherapeutic target. J Biol Chem. 2002 Feb 7;277(18):15913–15922. doi: 10.1074/jbc.M108393200. [DOI] [PubMed] [Google Scholar]
  10. Lohmann S. M., Vaandrager A. B., Smolenski A., Walter U., De Jonge H. R. Distinct and specific functions of cGMP-dependent protein kinases. Trends Biochem Sci. 1997 Aug;22(8):307–312. doi: 10.1016/s0968-0004(97)01086-4. [DOI] [PubMed] [Google Scholar]
  11. McKay D. B., Steitz T. A. Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature. 1981 Apr 30;290(5809):744–749. doi: 10.1038/290744a0. [DOI] [PubMed] [Google Scholar]
  12. Reed R. B., Sandberg M., Jahnsen T., Lohmann S. M., Francis S. H., Corbin J. D. Fast and slow cyclic nucleotide-dissociation sites in cAMP-dependent protein kinase are transposed in type Ibeta cGMP-dependent protein kinase. J Biol Chem. 1996 Jul 19;271(29):17570–17575. doi: 10.1074/jbc.271.29.17570. [DOI] [PubMed] [Google Scholar]
  13. Ridley Robert G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature. 2002 Feb 7;415(6872):686–693. doi: 10.1038/415686a. [DOI] [PubMed] [Google Scholar]
  14. Salowe Scott P., Wiltsie Judyann, Liberator Paul A., Donald Robert G. K. The role of a parasite-specific allosteric site in the distinctive activation behavior of Eimeria tenella cGMP-dependent protein kinase. Biochemistry. 2002 Apr 2;41(13):4385–4391. doi: 10.1021/bi0156658. [DOI] [PubMed] [Google Scholar]
  15. Shabb J. B., Corbin J. D. Cyclic nucleotide-binding domains in proteins having diverse functions. J Biol Chem. 1992 Mar 25;267(9):5723–5726. [PubMed] [Google Scholar]
  16. Slice L. W., Taylor S. S. Expression of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli. J Biol Chem. 1989 Dec 15;264(35):20940–20946. [PubMed] [Google Scholar]
  17. Smith J. A., Reed R. B., Francis S. H., Grimes K., Corbin J. D. Distinguishing the roles of the two different cGMP-binding sites for modulating phosphorylation of exogenous substrate (heterophosphorylation) and autophosphorylation of cGMP-dependent protein kinase. J Biol Chem. 2000 Jan 7;275(1):154–158. doi: 10.1074/jbc.275.1.154. [DOI] [PubMed] [Google Scholar]
  18. Taylor M. K., Uhler M. D. The amino-terminal cyclic nucleotide binding site of the type II cGMP-dependent protein kinase is essential for full cyclic nucleotide-dependent activation. J Biol Chem. 2000 Sep 8;275(36):28053–28062. doi: 10.1074/jbc.M004184200. [DOI] [PubMed] [Google Scholar]
  19. Weber I. T., Shabb J. B., Corbin J. D. Predicted structures of the cGMP binding domains of the cGMP-dependent protein kinase: a key alanine/threonine difference in evolutionary divergence of cAMP and cGMP binding sites. Biochemistry. 1989 Jul 11;28(14):6122–6127. doi: 10.1021/bi00440a059. [DOI] [PubMed] [Google Scholar]
  20. Wolfe L., Corbin J. D., Francis S. H. Characterization of a novel isozyme of cGMP-dependent protein kinase from bovine aorta. J Biol Chem. 1989 May 5;264(13):7734–7741. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES