Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 1;374(Pt 2):505–511. doi: 10.1042/BJ20030420

Induced expression of manganese superoxide dismutase by non-toxic concentrations of oxidized low-density lipoprotein (oxLDL) protects against oxLDL-mediated cytotoxicity.

Vladimir A Shatrov 1, Bernhard Brüne 1
PMCID: PMC1223623  PMID: 12826016

Abstract

Oxidized low-density lipoprotein (oxLDL) affects macrophages and plays a critical role in the development of atherosclerosis. In the present paper, we demonstrate that high concentrations of oxLDL provoked apoptosis of human Mono-Mac-6 cells, which was blocked by diphenylene-iodonium (DPI), an inhibitor of flavin-containing enzymes, such as NADPH oxidase, suggesting the involvement of reactive oxygen species (ROS). Importantly, pre-treatment of cells with low concentrations of oxLDL prevented apoptosis in response to high concentrations of oxLDL by up-regulating manganese superoxide dismutase (MnSOD). DPI prevented expression of MnSOD by oxLDL, whereas inhibitors of cytochrome P450 (methoxalen) or xanthine oxidase (allopurinol) did not, thus pointing to a role of NADPH-oxidase-derived ROS in oxLDL-induced MnSOD expression. Transfection of cells with MnSOD antisense, but not scrambled antisense, oligonucleotides significantly attenuated oxLDL-mediated MnSOD expression and hindered cytoprotective effects of non-toxic oxLDL concentrations. Our findings suggest that up-regulation of MnSOD by low concentrations of oxLDL is critical for protection towards oxLDL-mediated cytotoxicity.

Full Text

The Full Text of this article is available as a PDF (203.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bea Florian, Hudson Francesca N., Chait Alan, Kavanagh Terrance J., Rosenfeld Michael E. Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements. Circ Res. 2003 Feb 6;92(4):386–393. doi: 10.1161/01.RES.0000059561.65545.16. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Chandel N. S., Maltepe E., Goldwasser E., Mathieu C. E., Simon M. C., Schumacker P. T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11715–11720. doi: 10.1073/pnas.95.20.11715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cho S., Hazama M., Urata Y., Goto S., Horiuchi S., Sumikawa K., Kondo T. Protective role of glutathione synthesis in response to oxidized low density lipoprotein in human vascular endothelial cells. Free Radic Biol Med. 1999 Mar;26(5-6):589–602. doi: 10.1016/s0891-5849(98)00232-9. [DOI] [PubMed] [Google Scholar]
  5. Dougall W. C., Nick H. S. Manganese superoxide dismutase: a hepatic acute phase protein regulated by interleukin-6 and glucocorticoids. Endocrinology. 1991 Nov;129(5):2376–2384. doi: 10.1210/endo-129-5-2376. [DOI] [PubMed] [Google Scholar]
  6. Fischer Barbara, von Knethen Andreas, Brüne Bernhard. Dualism of oxidized lipoproteins in provoking and attenuating the oxidative burst in macrophages: role of peroxisome proliferator-activated receptor-gamma. J Immunol. 2002 Mar 15;168(6):2828–2834. doi: 10.4049/jimmunol.168.6.2828. [DOI] [PubMed] [Google Scholar]
  7. Guevara N. V., Kim H. S., Antonova E. I., Chan L. The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat Med. 1999 Mar;5(3):335–339. doi: 10.1038/6585. [DOI] [PubMed] [Google Scholar]
  8. Haberland M. E., Fong D., Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science. 1988 Jul 8;241(4862):215–218. doi: 10.1126/science.2455346. [DOI] [PubMed] [Google Scholar]
  9. Hajjar D. P., Haberland M. E. Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellular saboteurs. J Biol Chem. 1997 Sep 12;272(37):22975–22978. doi: 10.1074/jbc.272.37.22975. [DOI] [PubMed] [Google Scholar]
  10. Hardwick S. J., Hegyi L., Clare K., Law N. S., Carpenter K. L., Mitchinson M. J., Skepper J. N. Apoptosis in human monocyte-macrophages exposed to oxidized low density lipoprotein. J Pathol. 1996 Jul;179(3):294–302. doi: 10.1002/(SICI)1096-9896(199607)179:3<294::AID-PATH590>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  11. Heermeier K., Leicht W., Palmetshofer A., Ullrich M., Wanner C., Galle J. Oxidized LDL suppresses NF-kappaB and overcomes protection from apoptosis in activated endothelial cells. J Am Soc Nephrol. 2001 Mar;12(3):456–463. doi: 10.1681/ASN.V123456. [DOI] [PubMed] [Google Scholar]
  12. Hegyi L., Hardwick S. J., Siow R. C., Skepper J. N. Macrophage death and the role of apoptosis in human atherosclerosis. J Hematother Stem Cell Res. 2001 Feb;10(1):27–42. doi: 10.1089/152581601750098192. [DOI] [PubMed] [Google Scholar]
  13. Heinecke J. W. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis. 1998 Nov;141(1):1–15. doi: 10.1016/s0021-9150(98)00173-7. [DOI] [PubMed] [Google Scholar]
  14. Heinloth Alexandra, Brüne Bernhard, Fischer Barbara, Galle Jan. Nitric oxide prevents oxidised LDL-induced p53 accumulation, cytochrome c translocation, and apoptosis in macrophages via guanylate cyclase stimulation. Atherosclerosis. 2002 May;162(1):93–101. doi: 10.1016/s0021-9150(01)00687-6. [DOI] [PubMed] [Google Scholar]
  15. Ihling C., Haendeler J., Menzel G., Hess R. D., Fraedrich G., Schaefer H. E., Zeiher A. M. Co-expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions. J Pathol. 1998 Jul;185(3):303–312. doi: 10.1002/(SICI)1096-9896(199807)185:3<303::AID-PATH106>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  16. Ihling C., Menzel G., Wellens E., Mönting J. S., Schaefer H. E., Zeiher A. M. Topographical association between the cyclin-dependent kinases inhibitor P21, p53 accumulation, and cellular proliferation in human atherosclerotic tissue. Arterioscler Thromb Vasc Biol. 1997 Oct;17(10):2218–2224. doi: 10.1161/01.atv.17.10.2218. [DOI] [PubMed] [Google Scholar]
  17. Irani K. Oxidant signaling in vascular cell growth, death, and survival : a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res. 2000 Aug 4;87(3):179–183. doi: 10.1161/01.res.87.3.179. [DOI] [PubMed] [Google Scholar]
  18. Jeney Viktória, Balla József, Yachie Akihiro, Varga Zsuzsa, Vercellotti Gregory M., Eaton John W., Balla György. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002 Aug 1;100(3):879–887. doi: 10.1182/blood.v100.3.879. [DOI] [PubMed] [Google Scholar]
  19. Jovinge S., Crisby M., Thyberg J., Nilsson J. DNA fragmentation and ultrastructural changes of degenerating cells in atherosclerotic lesions and smooth muscle cells exposed to oxidized LDL in vitro. Arterioscler Thromb Vasc Biol. 1997 Oct;17(10):2225–2231. doi: 10.1161/01.atv.17.10.2225. [DOI] [PubMed] [Google Scholar]
  20. Kinscherf R., Deigner H. P., Usinger C., Pill J., Wagner M., Kamencic H., Hou D., Chen M., Schmiedt W., Schrader M. Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits. FASEB J. 1997 Dec;11(14):1317–1328. doi: 10.1096/fasebj.11.14.9409551. [DOI] [PubMed] [Google Scholar]
  21. Kockx M. M., Herman A. G. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res. 2000 Feb;45(3):736–746. doi: 10.1016/s0008-6363(99)00235-7. [DOI] [PubMed] [Google Scholar]
  22. Kockx M. M., Knaapen M. W. The role of apoptosis in vascular disease. J Pathol. 2000 Feb;190(3):267–280. doi: 10.1002/(SICI)1096-9896(200002)190:3<267::AID-PATH523>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lessner Susan M., Prado Heather L., Waller Edmund K., Galis Zorina S. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am J Pathol. 2002 Jun;160(6):2145–2155. doi: 10.1016/S0002-9440(10)61163-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lohrum M. A., Vousden K. H. Regulation and function of the p53-related proteins: same family, different rules. Trends Cell Biol. 2000 May;10(5):197–202. doi: 10.1016/s0962-8924(00)01736-0. [DOI] [PubMed] [Google Scholar]
  26. Lusis A. J. Atherosclerosis. Nature. 2000 Sep 14;407(6801):233–241. doi: 10.1038/35025203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marchant C. E., Law N. S., van der Veen C., Hardwick S. J., Carpenter K. L., Mitchinson M. J. Oxidized low-density lipoprotein is cytotoxic to human monocyte-macrophages: protection with lipophilic antioxidants. FEBS Lett. 1995 Jan 23;358(2):175–178. doi: 10.1016/0014-5793(94)01393-f. [DOI] [PubMed] [Google Scholar]
  28. Martinet W., Kockx M. M. Apoptosis in atherosclerosis: focus on oxidized lipids and inflammation. Curr Opin Lipidol. 2001 Oct;12(5):535–541. doi: 10.1097/00041433-200110000-00009. [DOI] [PubMed] [Google Scholar]
  29. Mazière C., Meignotte A., Dantin F., Conte M. A., Mazière J. C. Oxidized LDL induces an oxidative stress and activates the tumor suppressor p53 in MRC5 human fibroblasts. Biochem Biophys Res Commun. 2000 Sep 24;276(2):718–723. doi: 10.1006/bbrc.2000.3528. [DOI] [PubMed] [Google Scholar]
  30. Mitchinson M. J., Hardwick S. J., Bennett M. R. Cell death in atherosclerotic plaques. Curr Opin Lipidol. 1996 Oct;7(5):324–329. doi: 10.1097/00041433-199610000-00011. [DOI] [PubMed] [Google Scholar]
  31. Moellering Douglas R., Levonen Anna-Liisa, Go Young-Mi, Patel Rakesh P., Dickinson Dale A., Forman Henry Jay, Darley-Usmar Victor M. Induction of glutathione synthesis by oxidized low-density lipoprotein and 1-palmitoyl-2-arachidonyl phosphatidylcholine: protection against quinone-mediated oxidative stress. Biochem J. 2002 Feb 15;362(Pt 1):51–59. doi: 10.1042/0264-6021:3620051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pirillo A., Norata G. D., Zanelli T., Catapano A. L. Overexpression of inducible heat shock protein 70 in Cos-1 cells fails to protect from cytotoxicity of oxidized ldls. Arterioscler Thromb Vasc Biol. 2001 Mar;21(3):348–354. doi: 10.1161/01.atv.21.3.348. [DOI] [PubMed] [Google Scholar]
  33. Robinson B. H. The role of manganese superoxide dismutase in health and disease. J Inherit Metab Dis. 1998 Aug;21(5):598–603. doi: 10.1023/a:1005427323835. [DOI] [PubMed] [Google Scholar]
  34. Sen C. K., Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996 May;10(7):709–720. doi: 10.1096/fasebj.10.7.8635688. [DOI] [PubMed] [Google Scholar]
  35. Sheikh M. S., Fornace A. J., Jr Role of p53 family members in apoptosis. J Cell Physiol. 2000 Feb;182(2):171–181. doi: 10.1002/(SICI)1097-4652(200002)182:2<171::AID-JCP5>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  36. Steinberg D. At last, direct evidence that lipoxygenases play a role in atherogenesis. J Clin Invest. 1999 Jun;103(11):1487–1488. doi: 10.1172/JCI7298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  38. Stuehr D. J., Fasehun O. A., Kwon N. S., Gross S. S., Gonzalez J. A., Levi R., Nathan C. F. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J. 1991 Jan;5(1):98–103. doi: 10.1096/fasebj.5.1.1703974. [DOI] [PubMed] [Google Scholar]
  39. Visner G. A., Dougall W. C., Wilson J. M., Burr I. A., Nick H. S. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J Biol Chem. 1990 Feb 15;265(5):2856–2864. [PubMed] [Google Scholar]
  40. Wong G. H., Elwell J. H., Oberley L. W., Goeddel D. V. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell. 1989 Sep 8;58(5):923–931. doi: 10.1016/0092-8674(89)90944-6. [DOI] [PubMed] [Google Scholar]
  41. Wong G. H., Goeddel D. V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science. 1988 Nov 11;242(4880):941–944. doi: 10.1126/science.3263703. [DOI] [PubMed] [Google Scholar]
  42. van Vlijmen B. J., Gerritsen G., Franken A. L., Boesten L. S., Kockx M. M., Gijbels M. J., Vierboom M. P., van Eck M., van De Water B., van Berkel T. J. Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE*3-Leiden transgenic mice. Circ Res. 2001 Apr 27;88(8):780–786. doi: 10.1161/hh0801.089261. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES