Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 1;374(Pt 2):413–421. doi: 10.1042/BJ20030431

Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.

Amro A Amara 1, Bernd H A Rehm 1
PMCID: PMC1223625  PMID: 12924980

Abstract

The class II PHA (polyhydroxyalkanoate) synthases [PHA(MCL) synthases (medium-chain-length PHA synthases)] are mainly found in pseudomonads and catalyse synthesis of PHA(MCL)s using CoA thioesters of medium-chain-length 3-hydroxy fatty acids (C6-C14) as a substrate. Only recently PHA(MCL) synthases from Pseudomonas oleovorans and Pseudomonas aeruginosa were purified and in vitro activity was achieved. A threading model of the P. aeruginosa PHA(MCL) synthase PhaC1 was developed based on the homology to the epoxide hydrolase (1ek1) from mouse which belongs to the alpha/beta-hydrolase superfamily. The putative catalytic residues Cys-296, Asp-452, His-453 and His-480 were replaced by site-specific mutagenesis. In contrast to class I and III PHA synthases, the replacement of His-480, which aligns with the conserved base catalyst of the alpha/beta-hydrolases, with Gln did not affect in vivo enzyme activity and only slightly in vitro enzyme activity. The second conserved histidine His-453 was then replaced by Gln, and the modified enzyme showed only 24% of wild-type in vivo activity, which indicated that His-453 might functionally replace His-480 in class II PHA synthases. Replacement of the postulated catalytic nucleophile Cys-296 by Ser only reduced in vivo enzyme activity to 30% of wild-type enzyme activity and drastically changed substrate specificity. Moreover, the C296S mutation turned the enzyme sensitive towards PMSF inhibition. The replacement of Asp-452 by Asn, which is supposed to be required as general base catalyst for elongation reaction, did abolish enzyme activity as was found for the respective amino acid residue of class I and III enzymes. In the threading model residues Cys-296, Asp-452, His-453 and His-480 reside in the core structure with the putative catalytic nucleophile Cys-296 localized at the highly conserved gamma-turns of the alpha/beta-hydrolases. Inhibitor studies indicated that catalytic histidines reside in the active site. The conserved residue Trp-398 was replaced by Phe and Ala, respectively, which caused inactivation of the enzyme indicating an essential role of this residue. In the threading model this residue was found to be surface-exposed. No evidence for post-translational modification by 4-phosphopantetheine was obtained. Overall, these data suggested that in class II PHA synthases the conserved histidine which was found as general base catalyst in the catalytic triad of enzymes related to the alpha/beta-hydrolase superfamily, was functionally replaced by His-453 which is conserved among all PHA synthases.

Full Text

The Full Text of this article is available as a PDF (338.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amara A. A., Steinbüchel A., Rehm B. H. A. In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol. 2002 Jun 22;59(4-5):477–482. doi: 10.1007/s00253-002-1035-3. [DOI] [PubMed] [Google Scholar]
  2. Antonio R. V., Steinbüchel A., Rehm B. H. Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett. 2000 Jan 1;182(1):111–117. doi: 10.1111/j.1574-6968.2000.tb08883.x. [DOI] [PubMed] [Google Scholar]
  3. Argiriadi M. A., Morisseau C., Goodrow M. H., Dowdy D. L., Hammock B. D., Christianson D. W. Binding of alkylurea inhibitors to epoxide hydrolase implicates active site tyrosines in substrate activation. J Biol Chem. 2000 May 19;275(20):15265–15270. doi: 10.1074/jbc.M000278200. [DOI] [PubMed] [Google Scholar]
  4. Brandl H., Gross R. A., Lenz R. W., Fuller R. C. Pseudomonas oleovorans as a Source of Poly(beta-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters. Appl Environ Microbiol. 1988 Aug;54(8):1977–1982. doi: 10.1128/aem.54.8.1977-1982.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DiRusso C. C. Primary sequence of the Escherichia coli fadBA operon, encoding the fatty acid-oxidizing multienzyme complex, indicates a high degree of homology to eucaryotic enzymes. J Bacteriol. 1990 Nov;172(11):6459–6468. doi: 10.1128/jb.172.11.6459-6468.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  7. Fiedler S., Steinbüchel A., Rehm B. H. PhaG-mediated synthesis of Poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl Environ Microbiol. 2000 May;66(5):2117–2124. doi: 10.1128/aem.66.5.2117-2124.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fiedler Silke, Steinbüchel Alexander, Rehm Bernd H. A. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol. 2002 Jun 14;178(2):149–160. doi: 10.1007/s00203-002-0444-0. [DOI] [PubMed] [Google Scholar]
  9. Fischer D., Eisenberg D. Protein fold recognition using sequence-derived predictions. Protein Sci. 1996 May;5(5):947–955. doi: 10.1002/pro.5560050516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerngross T. U., Martin D. P. Enzyme-catalyzed synthesis of poly[(R)-(-)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6279–6283. doi: 10.1073/pnas.92.14.6279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerngross T. U., Snell K. D., Peoples O. P., Sinskey A. J., Csuhai E., Masamune S., Stubbe J. Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry. 1994 Aug 9;33(31):9311–9320. doi: 10.1021/bi00197a035. [DOI] [PubMed] [Google Scholar]
  12. Hoffmann Nils, Amara Amro A., Beermann Br Bernd, Qi Qingsheng, Hinz Hans-Jurgen, Rehm Bernd H. A. Biochemical characterization of the Pseudomonas putida 3-hydroxyacyl ACP:CoA transacylase, which diverts intermediates of fatty acid de novo biosynthesis. J Biol Chem. 2002 Aug 27;277(45):42926–42936. doi: 10.1074/jbc.M207821200. [DOI] [PubMed] [Google Scholar]
  13. Hoppensack A., Rehm B. H., Steinbüchel A. Analysis of 4-phosphopantetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha: generation of beta-alanine auxotrophic Tn5 mutants and cloning of the panD gene region. J Bacteriol. 1999 Mar;181(5):1429–1435. doi: 10.1128/jb.181.5.1429-1435.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huijberts G. N., de Rijk T. C., de Waard P., Eggink G. 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J Bacteriol. 1994 Mar;176(6):1661–1666. doi: 10.1128/jb.176.6.1661-1666.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jackowski S., Rock C. O. Regulation of coenzyme A biosynthesis. J Bacteriol. 1981 Dec;148(3):926–932. doi: 10.1128/jb.148.3.926-932.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jia Y., Kappock T. J., Frick T., Sinskey A. J., Stubbe J. Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium vinosum PHB synthase. Biochemistry. 2000 Apr 11;39(14):3927–3936. doi: 10.1021/bi9928086. [DOI] [PubMed] [Google Scholar]
  17. Jia Y., Yuan W., Wodzinska J., Park C., Sinskey A. J., Stubbe J. Mechanistic studies on class I polyhydroxybutyrate (PHB) synthase from Ralstonia eutropha: class I and III synthases share a similar catalytic mechanism. Biochemistry. 2001 Jan 30;40(4):1011–1019. doi: 10.1021/bi002219w. [DOI] [PubMed] [Google Scholar]
  18. Karplus K., Barrett C., Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics. 1998;14(10):846–856. doi: 10.1093/bioinformatics/14.10.846. [DOI] [PubMed] [Google Scholar]
  19. Kelley L. A., MacCallum R. M., Sternberg M. J. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol. 2000 Jun 2;299(2):499–520. doi: 10.1006/jmbi.2000.3741. [DOI] [PubMed] [Google Scholar]
  20. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M., 2nd, Peterson K. M. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995 Dec 1;166(1):175–176. doi: 10.1016/0378-1119(95)00584-1. [DOI] [PubMed] [Google Scholar]
  21. LIPMANN F., TUTTLE L. C. Lipase-catalysed condensation of fatty acids with hydroxylamine. Biochim Biophys Acta. 1950 Jan;4(1-3):301–309. doi: 10.1016/0006-3002(50)90036-9. [DOI] [PubMed] [Google Scholar]
  22. Langenbach S., Rehm B. H., Steinbüchel A. Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett. 1997 May 15;150(2):303–309. doi: 10.1016/s0378-1097(97)00142-0. [DOI] [PubMed] [Google Scholar]
  23. Laskowski R. A., Moss D. S., Thornton J. M. Main-chain bond lengths and bond angles in protein structures. J Mol Biol. 1993 Jun 20;231(4):1049–1067. doi: 10.1006/jmbi.1993.1351. [DOI] [PubMed] [Google Scholar]
  24. Liebergesell M., Sonomoto K., Madkour M., Mayer F., Steinbüchel A. Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur J Biochem. 1994 Nov 15;226(1):71–80. doi: 10.1111/j.1432-1033.1994.tb20027.x. [DOI] [PubMed] [Google Scholar]
  25. Liebergesell M., Steinbüchel A. Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem. 1992 Oct 1;209(1):135–150. doi: 10.1111/j.1432-1033.1992.tb17270.x. [DOI] [PubMed] [Google Scholar]
  26. Lüthy R., Bowie J. U., Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992 Mar 5;356(6364):83–85. doi: 10.1038/356083a0. [DOI] [PubMed] [Google Scholar]
  27. Müh U., Sinskey A. J., Kirby D. P., Lane W. S., Stubbe J. PHA synthase from chromatium vinosum: cysteine 149 is involved in covalent catalysis. Biochemistry. 1999 Jan 12;38(2):826–837. doi: 10.1021/bi9818319. [DOI] [PubMed] [Google Scholar]
  28. Qi Q., Rehm B. H. Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase. Microbiology. 2001 Dec;147(Pt 12):3353–3358. doi: 10.1099/00221287-147-12-3353. [DOI] [PubMed] [Google Scholar]
  29. Qi Q., Rehm B. H., Steinbüchel A. Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett. 1997 Dec 1;157(1):155–162. doi: 10.1111/j.1574-6968.1997.tb12767.x. [DOI] [PubMed] [Google Scholar]
  30. Qi Q., Steinbüchel A., Rehm B. H. In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2000 Jul;54(1):37–43. doi: 10.1007/s002530000357. [DOI] [PubMed] [Google Scholar]
  31. Qi Q., Steinbüchel A., Rehm B. H. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol Lett. 1998 Oct 1;167(1):89–94. doi: 10.1111/j.1574-6968.1998.tb13212.x. [DOI] [PubMed] [Google Scholar]
  32. Rehm B. H., Krüger N., Steinbüchel A. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem. 1998 Sep 11;273(37):24044–24051. doi: 10.1074/jbc.273.37.24044. [DOI] [PubMed] [Google Scholar]
  33. Rehm B. H., Mitsky T. A., Steinbüchel A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol. 2001 Jul;67(7):3102–3109. doi: 10.1128/AEM.67.7.3102-3109.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rehm B. H., Qi Q., Beermann B. B., Hinz H. J., Steinbüchel A. Matrix-assisted in vitro refolding of Pseudomonas aeruginosa class II polyhydroxyalkanoate synthase from inclusion bodies produced in recombinant Escherichia coli. Biochem J. 2001 Aug 15;358(Pt 1):263–268. doi: 10.1042/0264-6021:3580263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rehm B. H., Steinbüchel A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol. 1999 Jun-Jul;25(1-3):3–19. doi: 10.1016/s0141-8130(99)00010-0. [DOI] [PubMed] [Google Scholar]
  36. Rehm Bernd H. A., Antonio Regina V., Spiekermann Patricia, Amara Amro A., Steinbüchel Alexander. Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Biochim Biophys Acta. 2002 Jan 31;1594(1):178–190. doi: 10.1016/s0167-4838(01)00299-0. [DOI] [PubMed] [Google Scholar]
  37. Rusnak F., Sakaitani M., Drueckhammer D., Reichert J., Walsh C. T. Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene, expression and purification of EntF, and analysis of covalent phosphopantetheine. Biochemistry. 1991 Mar 19;30(11):2916–2927. doi: 10.1021/bi00225a027. [DOI] [PubMed] [Google Scholar]
  38. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yuan W., Jia Y., Tian J., Snell K. D., Müh U., Sinskey A. J., Lambalot R. H., Walsh C. T., Stubbe J. Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies. Arch Biochem Biophys. 2001 Oct 1;394(1):87–98. doi: 10.1006/abbi.2001.2522. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES