Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 15;374(Pt 3):647–656. doi: 10.1042/BJ20030215

A novel protein phosphatase 2A (PP2A) is involved in the transformation of human protozoan parasite Trypanosoma cruzi.

Jorge González 1, Alberto Cornejo 1, Marcia R M Santos 1, Esteban M Cordero 1, Bessy Gutiérrez 1, Patricio Porcile 1, Renato A Mortara 1, Hernán Sagua 1, José Franco Da Silveira 1, Jorge E Araya 1
PMCID: PMC1223626  PMID: 12737627

Abstract

Here we provide evidence for a critical role of PP2As (protein phosphatase 2As) in the transformation of Trypanosoma cruzi. In axenic medium at pH 5.0, trypomastigotes rapidly transform into amastigotes, a process blocked by okadaic acid, a potent PP2A inhibitor, at concentrations as low as 0.1 microM. 1-Norokadaone, an inactive okadaic acid analogue, did not affect the transformation. Electron microscopy studies indicated that okadaic acid-treated trypomastigotes had not undergone ultrastructural modifications, reinforcing the idea that PP2A inhibits transformation. Using a microcystin-Sepharose affinity column we purified the native T. cruzi PP2A. The enzyme displayed activity against 32P-labelled phosphorylase a that was inhibited in a dose-dependent manner by okadaic acid. The protein was also submitted to MS and, from the peptides obtained, degenerate primers were used to clone a novel T. cruzi PP2A enzyme by PCR. The isolated gene encodes a protein of 303 amino acids, termed TcPP2A, which displayed a high degree of homology (86%) with the catalytic subunit of Trypanosoma brucei PP2A. Northern-blot analysis revealed the presence of a major 2.1-kb mRNA hybridizing in all T. cruzi developmental stages. Southern-blot analysis suggested that the TcPP2A gene is present in low copy number in the T. cruzi genome. These results are consistent with the mapping of PP2A genes in two chromosomal bands by pulsed-field gel electrophoresis and chromoblot hybridization. Our studies suggest that in T. cruzi PP2A is important for the complete transformation of trypomastigotes into amastigotes during the life cycle of this protozoan parasite.

Full Text

The Full Text of this article is available as a PDF (437.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arino J., Woon C. W., Brautigan D. L., Miller T. B., Jr, Johnson G. L. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4252–4256. doi: 10.1073/pnas.85.12.4252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barford D. Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci. 1996 Nov;21(11):407–412. doi: 10.1016/s0968-0004(96)10060-8. [DOI] [PubMed] [Google Scholar]
  5. Barton G. J., Cohen P. T., Barford D. Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases. Eur J Biochem. 1994 Feb 15;220(1):225–237. doi: 10.1111/j.1432-1033.1994.tb18618.x. [DOI] [PubMed] [Google Scholar]
  6. Burleigh B. A., Andrews N. W. The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu Rev Microbiol. 1995;49:175–200. doi: 10.1146/annurev.mi.49.100195.001135. [DOI] [PubMed] [Google Scholar]
  7. Cano M. I., Gruber A., Vazquez M., Cortés A., Levin M. J., González A., Degrave W., Rondinelli E., Zingales B., Ramirez J. L. Molecular karyotype of clone CL Brener chosen for the Trypanosoma cruzi genome project. Mol Biochem Parasitol. 1995 May;71(2):273–278. doi: 10.1016/0166-6851(95)00066-a. [DOI] [PubMed] [Google Scholar]
  8. Cohen P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci. 1992 Oct;17(10):408–413. doi: 10.1016/0968-0004(92)90010-7. [DOI] [PubMed] [Google Scholar]
  9. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  10. Collins E., Sim A. T. Regulation of neuronal PP1 and PP2A during development. Methods Mol Biol. 1998;93:79–102. doi: 10.1385/0-89603-468-2:79. [DOI] [PubMed] [Google Scholar]
  11. Das A., Gale M., Jr, Carter V., Parsons M. The protein phosphatase inhibitor okadaic acid induces defects in cytokinesis and organellar genome segregation in Trypanosoma brucei. J Cell Sci. 1994 Dec;107(Pt 12):3477–3483. doi: 10.1242/jcs.107.12.3477. [DOI] [PubMed] [Google Scholar]
  12. Doerig Christian, Meijer Laurent, Mottram Jeremy C. Protein kinases as drug targets in parasitic protozoa. Trends Parasitol. 2002 Aug;18(8):366–371. doi: 10.1016/s1471-4922(02)02321-8. [DOI] [PubMed] [Google Scholar]
  13. Eriksson J. E., Brautigan D. L., Vallee R., Olmsted J., Fujiki H., Goldman R. D. Cytoskeletal integrity in interphase cells requires protein phosphatase activity. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11093–11097. doi: 10.1073/pnas.89.22.11093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Erondu N. E., Donelson J. E. Characterization of trypanosome protein phosphatase 1 and 2A catalytic subunits. Mol Biochem Parasitol. 1991 Dec;49(2):303–314. doi: 10.1016/0166-6851(91)90074-g. [DOI] [PubMed] [Google Scholar]
  15. Evers R., Cornelissen A. W. The Trypanosoma brucei protein phosphatase gene: polycistronic transcription with the RNA polymerase II largest subunit gene. Nucleic Acids Res. 1990 Sep 11;18(17):5089–5095. doi: 10.1093/nar/18.17.5089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Favre B., Turowski P., Hemmings B. A. Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem. 1997 May 23;272(21):13856–13863. doi: 10.1074/jbc.272.21.13856. [DOI] [PubMed] [Google Scholar]
  17. Furuya T., Kashuba C., Docampo R., Moreno S. N. A novel phosphatidylinositol-phospholipase C of Trypanosoma cruzi that is lipid modified and activated during trypomastigote to amastigote differentiation. J Biol Chem. 2000 Mar 3;275(9):6428–6438. doi: 10.1074/jbc.275.9.6428. [DOI] [PubMed] [Google Scholar]
  18. Gonzales-Perdomo M., Romero P., Goldenberg S. Cyclic AMP and adenylate cyclase activators stimulate Trypanosoma cruzi differentiation. Exp Parasitol. 1988 Aug;66(2):205–212. doi: 10.1016/0014-4894(88)90092-6. [DOI] [PubMed] [Google Scholar]
  19. González J., Ramalho-Pinto F. J., Frevert U., Ghiso J., Tomlinson S., Scharfstein J., Corey E. J., Nussenzweig V. Proteasome activity is required for the stage-specific transformation of a protozoan parasite. J Exp Med. 1996 Nov 1;184(5):1909–1918. doi: 10.1084/jem.184.5.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grellier P., Blum J., Santana J., Bylèn E., Mouray E., Sinou V., Teixeira A. R., Schrével J. Involvement of calyculin A-sensitive phosphatase(s) in the differentiation of Trypanosoma cruzi trypomastigotes to amastigotes. Mol Biochem Parasitol. 1999 Jan 25;98(2):239–252. doi: 10.1016/s0166-6851(98)00172-8. [DOI] [PubMed] [Google Scholar]
  21. Gómez M. L., Erijman L., Arauzo S., Torres H. N., Téllez-Iñn M. T. Protein kinase C in Trypanosoma cruzi epimastigote forms: partial purification and characterization. Mol Biochem Parasitol. 1989 Sep;36(2):101–108. doi: 10.1016/0166-6851(89)90182-5. [DOI] [PubMed] [Google Scholar]
  22. Hardie D. G., Haystead T. A., Sim A. T. Use of okadaic acid to inhibit protein phosphatases in intact cells. Methods Enzymol. 1991;201:469–476. doi: 10.1016/0076-6879(91)01042-z. [DOI] [PubMed] [Google Scholar]
  23. Hendrix P., Mayer-Jackel R. E., Cron P., Goris J., Hofsteenge J., Merlevede W., Hemmings B. A. Structure and expression of a 72-kDa regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. J Biol Chem. 1993 Jul 15;268(20):15267–15276. [PubMed] [Google Scholar]
  24. Hiraga A., Tamura S. Protein phosphatase 2A is associated in an inactive state with microtubules through 2A1-specific interaction with tubulin. Biochem J. 2000 Mar 1;346(Pt 2):433–439. [PMC free article] [PubMed] [Google Scholar]
  25. Janssens V., Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001 Feb 1;353(Pt 3):417–439. doi: 10.1042/0264-6021:3530417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lechward K., Awotunde O. S., Swiatek W., Muszyńska G. Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol. 2001;48(4):921–933. [PubMed] [Google Scholar]
  28. Li J. L., Baker D. A. Protein phosphatase beta, a putative type-2A protein phosphatase from the human malaria parasite Plasmodium falciparum. Eur J Biochem. 1997 Oct 1;249(1):98–106. doi: 10.1111/j.1432-1033.1997.t01-2-00098.x. [DOI] [PubMed] [Google Scholar]
  29. Ma Y., Lu Y., Zeng H., Ron D., Mo W., Neubert T. A. Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2001;15(18):1693–1700. doi: 10.1002/rcm.426. [DOI] [PubMed] [Google Scholar]
  30. MacKintosh R. W., Dalby K. N., Campbell D. G., Cohen P. T., Cohen P., MacKintosh C. The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett. 1995 Sep 11;371(3):236–240. doi: 10.1016/0014-5793(95)00888-g. [DOI] [PubMed] [Google Scholar]
  31. Mayer R. E., Hendrix P., Cron P., Matthies R., Stone S. R., Goris J., Merlevede W., Hofsteenge J., Hemmings B. A. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry. 1991 Apr 16;30(15):3589–3597. doi: 10.1021/bi00229a001. [DOI] [PubMed] [Google Scholar]
  32. McCright B., Virshup D. M. Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem. 1995 Nov 3;270(44):26123–26128. doi: 10.1074/jbc.270.44.26123. [DOI] [PubMed] [Google Scholar]
  33. Meek S., Morrice N., MacKintosh C. Microcystin affinity purification of plant protein phosphatases: PP1C, PP5 and a regulatory A-subunit of PP2A. FEBS Lett. 1999 Sep 3;457(3):494–498. doi: 10.1016/s0014-5793(99)01093-5. [DOI] [PubMed] [Google Scholar]
  34. Moorhead G., MacKintosh R. W., Morrice N., Gallagher T., MacKintosh C. Purification of type 1 protein (serine/threonine) phosphatases by microcystin-Sepharose affinity chromatography. FEBS Lett. 1994 Dec 12;356(1):46–50. doi: 10.1016/0014-5793(94)01232-6. [DOI] [PubMed] [Google Scholar]
  35. Ogueta S., Intosh G. M., Téllez-Iñon M. T. Regulation of Ca2+/calmodulin-dependent protein kinase from Trypanosoma cruzi. Mol Biochem Parasitol. 1996 Jun;78(1-2):171–183. doi: 10.1016/s0166-6851(96)02622-9. [DOI] [PubMed] [Google Scholar]
  36. Oliveira M. F., Bijovsky A. T., Carvalho T. U., de Souza W., Alves M. J., Colli W. A monoclonal antibody to Trypanosoma cruzi trypomastigotes recognizes a myosin tail epitope. Parasitol Res. 2001 Dec;87(12):1043–1049. doi: 10.1007/s004360100465. [DOI] [PubMed] [Google Scholar]
  37. Orgad S., Brewis N. D., Alphey L., Axton J. M., Dudai Y., Cohen P. T. The structure of protein phosphatase 2A is as highly conserved as that of protein phosphatase 1. FEBS Lett. 1990 Nov 26;275(1-2):44–48. doi: 10.1016/0014-5793(90)81435-q. [DOI] [PubMed] [Google Scholar]
  38. Orr G. A., Werner C., Xu J., Bennett M., Weiss L. M., Takvorkan P., Tanowitz H. B., Wittner M. Identification of novel serine/threonine protein phosphatases in Trypanosoma cruzi: a potential role in control of cytokinesis and morphology. Infect Immun. 2000 Mar;68(3):1350–1358. doi: 10.1128/iai.68.3.1350-1358.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Parsons M., Ruben L. Pathways involved in environmental sensing in trypanosomatids. Parasitol Today. 2000 Feb;16(2):56–62. doi: 10.1016/s0169-4758(99)01590-2. [DOI] [PubMed] [Google Scholar]
  40. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem. 1996 Mar 1;68(5):850–858. doi: 10.1021/ac950914h. [DOI] [PubMed] [Google Scholar]
  41. Sontag E., Nunbhakdi-Craig V., Bloom G. S., Mumby M. C. A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle. J Cell Biol. 1995 Mar;128(6):1131–1144. doi: 10.1083/jcb.128.6.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tomlinson S., Vandekerckhove F., Frevert U., Nussenzweig V. The induction of Trypanosoma cruzi trypomastigote to amastigote transformation by low pH. Parasitology. 1995 Jun;110(Pt 5):547–554. doi: 10.1017/s0031182000065264. [DOI] [PubMed] [Google Scholar]
  43. Ulloa R. M., Mesri E., Esteva M., Torres H. N., Téllez-Iñn M. T. Cyclic AMP-dependent protein kinase activity in Trypanosoma cruzi. Biochem J. 1988 Oct 1;255(1):319–326. [PMC free article] [PubMed] [Google Scholar]
  44. Yang P., Fox L., Colbran R. J., Sale W. S. Protein phosphatases PP1 and PP2A are located in distinct positions in the Chlamydomonas flagellar axoneme. J Cell Sci. 2000 Jan;113(Pt 1):91–102. doi: 10.1242/jcs.113.1.91. [DOI] [PubMed] [Google Scholar]
  45. Yoshida N. Surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi. Infect Immun. 1983 May;40(2):836–839. doi: 10.1128/iai.40.2.836-839.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. de Castro S. L., Meirelles M. de N., Oliveira M. M. Trypanosoma cruzi: adrenergic modulation of cyclic AMP role in proliferation and differentiation of amastigotes in vitro. Exp Parasitol. 1987 Dec;64(3):368–375. doi: 10.1016/0014-4894(87)90049-x. [DOI] [PubMed] [Google Scholar]
  47. de Diego J. L., Katz J. M., Marshall P., Gutiérrez B., Manning J. E., Nussenzweig V., González J. The ubiquitin-proteasome pathway plays an essential role in proteolysis during Trypanosoma cruzi remodeling. Biochemistry. 2001 Jan 30;40(4):1053–1062. doi: 10.1021/bi001659k. [DOI] [PubMed] [Google Scholar]
  48. de Souza W., Meza I., Martinez-Palomo A., Sabanero M., Souto-Padrón T., Meirelles M. N. Trypanosoma cruzi: distribution of fluorescently labeled tubulin and actin in epimastigotes. J Parasitol. 1983 Feb;69(1):138–142. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES