Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 15;374(Pt 3):779–784. doi: 10.1042/BJ20030422

Suppression by polycyclic compounds of the conversion of human amylin into insoluble amyloid.

Jacqueline F Aitken 1, Kerry M Loomes 1, Barbara Konarkowska 1, Garth J S Cooper 1
PMCID: PMC1223639  PMID: 12812521

Abstract

There is a significant correlation between the occurrence of pancreatic islet amyloid and beta-cell failure in advanced type II diabetes mellitus. Islet amyloid is composed primarily of the fibrillar form of the pancreatic hormone, amylin. Using thioflavin-T fluorescence binding and radioprecipitation assays, we investigated whether or not a series of small tricyclic compounds, tetracycline or Congo Red could interfere with the conversion of synthetic human amylin into its insoluble amyloid form. Of the compounds investigated, incubation of human amylin with a 20-fold molar excess of either Congo Red or Acridine Orange resulted in significant inhibition in the rate of amyloid formation. With Congo Red, maximal inhibition effectively occurred at a 1:1 molar ratio or greater over human amylin, whereas inhibition by Acridine Orange was dose-dependent. A 20-fold molar excess of the compound tetracycline also decreased insoluble amyloid content after extended incubation periods of approx. 20 h. Amyloid fibril morphology in the presence of tetracycline, as measured by transmission electron microscopy, was characterized by short fragmented fibrils compared with the longer and denser appearance of fibrils formed by amylin alone. These findings show that polycyclic compounds can suppress the formation of amyloid by human amylin, providing support for an alternative approach to peptide-based strategies by which islet amyloid formation could be modulated.

Full Text

The Full Text of this article is available as a PDF (179.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bai J. Z., Saafi E. L., Zhang S., Cooper G. J. Role of Ca2+ in apoptosis evoked by human amylin in pancreatic islet beta-cells. Biochem J. 1999 Oct 1;343(Pt 1):53–61. [PMC free article] [PubMed] [Google Scholar]
  2. Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519–550. doi: 10.1146/annurev.neuro.24.1.519. [DOI] [PubMed] [Google Scholar]
  3. Cooper G. J. Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr Rev. 1994 Apr;15(2):163–201. doi: 10.1210/edrv-15-2-163. [DOI] [PubMed] [Google Scholar]
  4. Cooper G. J., Willis A. C., Clark A., Turner R. C., Sim R. B., Reid K. B. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8628–8632. doi: 10.1073/pnas.84.23.8628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Forloni G., Colombo L., Girola L., Tagliavini F., Salmona M. Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett. 2001 Jan 5;487(3):404–407. doi: 10.1016/s0014-5793(00)02380-2. [DOI] [PubMed] [Google Scholar]
  6. Gazit Ehud. A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J. 2002 Jan;16(1):77–83. doi: 10.1096/fj.01-0442hyp. [DOI] [PubMed] [Google Scholar]
  7. Goldsbury C. S., Cooper G. J., Goldie K. N., Müller S. A., Saafi E. L., Gruijters W. T., Misur M. P., Engel A., Aebi U., Kistler J. Polymorphic fibrillar assembly of human amylin. J Struct Biol. 1997 Jun;119(1):17–27. doi: 10.1006/jsbi.1997.3858. [DOI] [PubMed] [Google Scholar]
  8. Goldsbury C., Goldie K., Pellaud J., Seelig J., Frey P., Müller S. A., Kistler J., Cooper G. J., Aebi U. Amyloid fibril formation from full-length and fragments of amylin. J Struct Biol. 2000 Jun;130(2-3):352–362. doi: 10.1006/jsbi.2000.4268. [DOI] [PubMed] [Google Scholar]
  9. Heller M., Loomes K. M., Cooper G. J. Synthesis of biologically active tritiated amylin and salmon calcitonin analogues. Anal Biochem. 2000 Oct 1;285(1):100–104. doi: 10.1006/abio.2000.4716. [DOI] [PubMed] [Google Scholar]
  10. Höppener J. W., Ahrén B., Lips C. J. Islet amyloid and type 2 diabetes mellitus. N Engl J Med. 2000 Aug 10;343(6):411–419. doi: 10.1056/NEJM200008103430607. [DOI] [PubMed] [Google Scholar]
  11. Höppener J. W., Oosterwijk C., Nieuwenhuis M. G., Posthuma G., Thijssen J. H., Vroom T. M., Ahrén B., Lips C. J. Extensive islet amyloid formation is induced by development of Type II diabetes mellitus and contributes to its progression: pathogenesis of diabetes in a mouse model. Diabetologia. 1999 Apr;42(4):427–434. doi: 10.1007/s001250051175. [DOI] [PubMed] [Google Scholar]
  12. Jaikaran E. T., Clark A. Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta. 2001 Nov 29;1537(3):179–203. doi: 10.1016/s0925-4439(01)00078-3. [DOI] [PubMed] [Google Scholar]
  13. Janson J., Ashley R. H., Harrison D., McIntyre S., Butler P. C. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes. 1999 Mar;48(3):491–498. doi: 10.2337/diabetes.48.3.491. [DOI] [PubMed] [Google Scholar]
  14. Kallberg Y., Gustafsson M., Persson B., Thyberg J., Johansson J. Prediction of amyloid fibril-forming proteins. J Biol Chem. 2000 Dec 27;276(16):12945–12950. doi: 10.1074/jbc.M010402200. [DOI] [PubMed] [Google Scholar]
  15. Kapurniotu Aphrodite, Schmauder Anke, Tenidis Konstantinos. Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity. J Mol Biol. 2002 Jan 18;315(3):339–350. doi: 10.1006/jmbi.2001.5244. [DOI] [PubMed] [Google Scholar]
  16. Khurana R., Uversky V. N., Nielsen L., Fink A. L. Is Congo red an amyloid-specific dye? J Biol Chem. 2001 Feb 28;276(25):22715–22721. doi: 10.1074/jbc.M011499200. [DOI] [PubMed] [Google Scholar]
  17. Lorenzo A., Razzaboni B., Weir G. C., Yankner B. A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature. 1994 Apr 21;368(6473):756–760. doi: 10.1038/368756a0. [DOI] [PubMed] [Google Scholar]
  18. Lorenzo A., Yankner B. A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12243–12247. doi: 10.1073/pnas.91.25.12243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McParland Victoria J., Kalverda Arnout P., Homans Steve W., Radford Sheena E. Structural properties of an amyloid precursor of beta(2)-microglobulin. Nat Struct Biol. 2002 May;9(5):326–331. doi: 10.1038/nsb791. [DOI] [PubMed] [Google Scholar]
  20. Moore C. X., Cooper G. J. Co-secretion of amylin and insulin from cultured islet beta-cells: modulation by nutrient secretagogues, islet hormones and hypoglycemic agents. Biochem Biophys Res Commun. 1991 Aug 30;179(1):1–9. doi: 10.1016/0006-291x(91)91325-7. [DOI] [PubMed] [Google Scholar]
  21. Scrocchi Louise A., Chen Yan, Waschuk Stefko, Wang Feng, Cheung Sindy, Darabie Audrey A., McLaurin JoAnne, Fraser Paul E. Design of peptide-based inhibitors of human islet amyloid polypeptide fibrillogenesis. J Mol Biol. 2002 May 3;318(3):697–706. doi: 10.1016/S0022-2836(02)00164-X. [DOI] [PubMed] [Google Scholar]
  22. Soeller W. C., Janson J., Hart S. E., Parker J. C., Carty M. D., Stevenson R. W., Kreutter D. K., Butler P. C. Islet amyloid-associated diabetes in obese A(vy)/a mice expressing human islet amyloid polypeptide. Diabetes. 1998 May;47(5):743–750. doi: 10.2337/diabetes.47.5.743. [DOI] [PubMed] [Google Scholar]
  23. Sommer Bernd. Alzheimer's disease and the amyloid cascade hypothesis: ten years on. Curr Opin Pharmacol. 2002 Feb;2(1):87–92. doi: 10.1016/s1471-4892(01)00126-6. [DOI] [PubMed] [Google Scholar]
  24. Tenidis K., Waldner M., Bernhagen J., Fischle W., Bergmann M., Weber M., Merkle M. L., Voelter W., Brunner H., Kapurniotu A. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. J Mol Biol. 2000 Jan 28;295(4):1055–1071. doi: 10.1006/jmbi.1999.3422. [DOI] [PubMed] [Google Scholar]
  25. Verchere C. B., D'Alessio D. A., Wang S., Andrikopoulos S., Kahn S. E. Transgenic overproduction of islet amyloid polypeptide (amylin) is not sufficient for islet amyloid formation. Horm Metab Res. 1997 Jun;29(6):311–316. doi: 10.1055/s-2007-979042. [DOI] [PubMed] [Google Scholar]
  26. Westermark P., Wernstedt C., Wilander E., Hayden D. W., O'Brien T. D., Johnson K. H. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3881–3885. doi: 10.1073/pnas.84.11.3881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zimmet P., Alberti K. G., Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001 Dec 13;414(6865):782–787. doi: 10.1038/414782a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES