Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 15;374(Pt 3):687–695. doi: 10.1042/BJ20030702

Malleable conformation of the elastic PEVK segment of titin: non-co-operative interconversion of polyproline II helix, beta-turn and unordered structures.

Kan Ma 1, Kuan Wang 1
PMCID: PMC1223640  PMID: 12816538

Abstract

To understand the structural basis of molecular elasticity and protein interaction of the elastic PEVK (Pro-Glu-Val-Lys) segment of the giant muscle protein titin, we carried out a detailed analysis of a representative PEVK module and a 16-module PEVK protein under various environmental conditions. Three conformational states, polyproline II (PPII) helix, beta-turn and unordered coil were identified by CD and NMR. These motifs interconvert without long-range co-operativity. As a general trend, the relative content of PPII increases with lower temperature and higher polarity, beta-turn increases with lower temperature and lower polarity, and unordered coil increases with higher temperature and higher polarity. NMR studies demonstrate that trans -proline residues are the predominant form at room temperature (22 degrees C), with little trans -to- cis isomerization below 35 degrees C. Ionic strength affects salt bridges between charged side chains, but not the backbone conformation. We conclude that titin PEVK conformation is malleable and responds to subtle environmental changes without co-operativity. This gradual conformational transition may represent a regulatory mechanism for fine-tuning protein interactions and elasticity.

Full Text

The Full Text of this article is available as a PDF (247.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bang M. L., Centner T., Fornoff F., Geach A. J., Gotthardt M., McNabb M., Witt C. C., Labeit D., Gregorio C. C., Granzier H. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res. 2001 Nov 23;89(11):1065–1072. doi: 10.1161/hh2301.100981. [DOI] [PubMed] [Google Scholar]
  2. Bienkiewicz E. A., Moon Woody A., Woody R. W. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments. J Mol Biol. 2000 Mar 17;297(1):119–133. doi: 10.1006/jmbi.2000.3545. [DOI] [PubMed] [Google Scholar]
  3. Blanch E. W., Morozova-Roche L. A., Cochran D. A., Doig A. J., Hecht L., Barron L. D. Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme. J Mol Biol. 2000 Aug 11;301(2):553–563. doi: 10.1006/jmbi.2000.3981. [DOI] [PubMed] [Google Scholar]
  4. Buck M. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys. 1998 Aug;31(3):297–355. doi: 10.1017/s003358359800345x. [DOI] [PubMed] [Google Scholar]
  5. Bustamante C., Marko J. F., Siggia E. D., Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994 Sep 9;265(5178):1599–1600. doi: 10.1126/science.8079175. [DOI] [PubMed] [Google Scholar]
  6. Champagne M. B., Edwards K. A., Erickson H. P., Kiehart D. P. Drosophila stretchin-MLCK is a novel member of the Titin/Myosin light chain kinase family. J Mol Biol. 2000 Jul 21;300(4):759–777. doi: 10.1006/jmbi.2000.3802. [DOI] [PubMed] [Google Scholar]
  7. Cox C., Lectka T. Synthetic catalysis of amide isomerization. Acc Chem Res. 2000 Dec;33(12):849–858. doi: 10.1021/ar990165g. [DOI] [PubMed] [Google Scholar]
  8. Creamer Trevor P., Campbell Margaret N. Determinants of the polyproline II helix from modeling studies. Adv Protein Chem. 2002;62:263–282. doi: 10.1016/s0065-3233(02)62010-8. [DOI] [PubMed] [Google Scholar]
  9. Flaherty Denise B., Gernert Kim M., Shmeleva Nataliya, Tang Xuexin, Mercer Kristina B., Borodovsky Mark, Benian Guy M. Titins in C.elegans with unusual features: coiled-coil domains, novel regulation of kinase activity and two new possible elastic regions. J Mol Biol. 2002 Oct 25;323(3):533–549. doi: 10.1016/s0022-2836(02)00970-1. [DOI] [PubMed] [Google Scholar]
  10. Freiburg A., Trombitas K., Hell W., Cazorla O., Fougerousse F., Centner T., Kolmerer B., Witt C., Beckmann J. S., Gregorio C. C. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res. 2000 Jun 9;86(11):1114–1121. doi: 10.1161/01.res.86.11.1114. [DOI] [PubMed] [Google Scholar]
  11. Fukuzawa A., Shimamura J., Takemori S., Kanzawa N., Yamaguchi M., Sun P., Maruyama K., Kimura S. Invertebrate connectin spans as much as 3.5 microm in the giant sarcomeres of crayfish claw muscle. EMBO J. 2001 Sep 3;20(17):4826–4835. doi: 10.1093/emboj/20.17.4826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gierasch L. M., Deber C. M., Madison V., Niu C. H., Blout E. R. Conformations of (X-L-Pro-Y)2 cyclic hexapeptides. Preferred beta-turn conformers and implications for beta turns in proteins. Biochemistry. 1981 Aug 4;20(16):4730–4738. doi: 10.1021/bi00519a032. [DOI] [PubMed] [Google Scholar]
  13. Greaser M. Identification of new repeating motifs in titin. Proteins. 2001 May 1;43(2):145–149. doi: 10.1002/1097-0134(20010501)43:2<145::aid-prot1026>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  14. Greenfield N. J. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem. 1996 Mar 1;235(1):1–10. doi: 10.1006/abio.1996.0084. [DOI] [PubMed] [Google Scholar]
  15. Gutierrez-Cruz G., Van Heerden A. H., Wang K. Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin. J Biol Chem. 2000 Nov 17;276(10):7442–7449. doi: 10.1074/jbc.M008851200. [DOI] [PubMed] [Google Scholar]
  16. Göthel S. F., Marahiel M. A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci. 1999 Mar;55(3):423–436. doi: 10.1007/s000180050299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horowits R. The physiological role of titin in striated muscle. Rev Physiol Biochem Pharmacol. 1999;138:57–96. doi: 10.1007/BFb0119624. [DOI] [PubMed] [Google Scholar]
  18. Hutchinson E. G., Thornton J. M. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 1994 Dec;3(12):2207–2216. doi: 10.1002/pro.5560031206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Labeit S., Kolmerer B., Linke W. A. The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res. 1997 Feb;80(2):290–294. doi: 10.1161/01.res.80.2.290. [DOI] [PubMed] [Google Scholar]
  20. Labeit S., Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995 Oct 13;270(5234):293–296. doi: 10.1126/science.270.5234.293. [DOI] [PubMed] [Google Scholar]
  21. Linke W. A., Ivemeyer M., Mundel P., Stockmeier M. R., Kolmerer B. Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8052–8057. doi: 10.1073/pnas.95.14.8052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ma K., Kan L., Wang K. Polyproline II helix is a key structural motif of the elastic PEVK segment of titin. Biochemistry. 2001 Mar 27;40(12):3427–3438. doi: 10.1021/bi0022792. [DOI] [PubMed] [Google Scholar]
  23. Ma Kan, Wang Kuan. Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. FEBS Lett. 2002 Dec 18;532(3):273–278. doi: 10.1016/s0014-5793(02)03655-4. [DOI] [PubMed] [Google Scholar]
  24. Machado C., Andrew D. J. D-Titin: a giant protein with dual roles in chromosomes and muscles. J Cell Biol. 2000 Oct 30;151(3):639–652. doi: 10.1083/jcb.151.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maruyama K., Kimura S., Ohashi K., Kuwano Y. Connectin, an elastic protein of muscle. Identification of "titin" with connectin. J Biochem. 1981 Mar;89(3):701–709. doi: 10.1093/oxfordjournals.jbchem.a133249. [DOI] [PubMed] [Google Scholar]
  26. Matsushima N., Creutz C. E., Kretsinger R. H. Polyproline, beta-turn helices. Novel secondary structures proposed for the tandem repeats within rhodopsin, synaptophysin, synexin, gliadin, RNA polymerase II, hordein, and gluten. Proteins. 1990;7(2):125–155. doi: 10.1002/prot.340070204. [DOI] [PubMed] [Google Scholar]
  27. Mayo K. H., Parra-Diaz D., McCarthy J. B., Chelberg M. Cell adhesion promoting peptide GVKGDKGNPGWPGAP from the collagen type IV triple helix: cis/trans proline-induced multiple 1H NMR conformations and evidence for a KG/PG multiple turn repeat motif in the all-trans proline state. Biochemistry. 1991 Aug 20;30(33):8251–8267. doi: 10.1021/bi00247a022. [DOI] [PubMed] [Google Scholar]
  28. McInnes C., Kay C. M., Hodges R. S., Sykes B. D. Conformational differences between cis and trans proline isomers of a peptide antigen representing the receptor binding domain of Pseudomonas aeruginosa as studied by 1H-NMR. Biopolymers. 1994 Sep;34(9):1221–1230. doi: 10.1002/bip.360340910. [DOI] [PubMed] [Google Scholar]
  29. Nagpal S., Gupta V., Kaur K. J., Salunke D. M. Structure-function analysis of tritrypticin, an antibacterial peptide of innate immune origin. J Biol Chem. 1999 Aug 13;274(33):23296–23304. doi: 10.1074/jbc.274.33.23296. [DOI] [PubMed] [Google Scholar]
  30. Perczel A., Hollósi M., Tusnády G., Fasman G. D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 1991 Aug;4(6):669–679. doi: 10.1093/protein/4.6.669. [DOI] [PubMed] [Google Scholar]
  31. Perczel A., Park K., Fasman G. D. Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal Biochem. 1992 May 15;203(1):83–93. doi: 10.1016/0003-2697(92)90046-a. [DOI] [PubMed] [Google Scholar]
  32. Politou Anastasia S., Spadaccini Roberta, Joseph Catherine, Brannetti Barbara, Guerrini Remo, Helmer-Citterich Manuela, Salvadori Severo, Temussi Piero Andrea, Pastore Annalisa. The SH3 domain of nebulin binds selectively to type II peptides: theoretical prediction and experimental validation. J Mol Biol. 2002 Feb 15;316(2):305–315. doi: 10.1006/jmbi.2001.5312. [DOI] [PubMed] [Google Scholar]
  33. Rabanal F., Ludevid M. D., Pons M., Giralt E. CD of proline-rich polypeptides: application to the study of the repetitive domain of maize glutelin-2. Biopolymers. 1993 Jul;33(7):1019–1028. doi: 10.1002/bip.360330704. [DOI] [PubMed] [Google Scholar]
  34. Ronish E. W., Krimm S. The calculated circular dichroism of polyproline II in the polarizability approximation. Biopolymers. 1974;13(8):1635–1651. doi: 10.1002/bip.1974.360130810. [DOI] [PubMed] [Google Scholar]
  35. Shi Zhengshuang, Woody Robert W., Kallenbach Neville R. Is polyproline II a major backbone conformation in unfolded proteins? Adv Protein Chem. 2002;62:163–240. doi: 10.1016/s0065-3233(02)62008-x. [DOI] [PubMed] [Google Scholar]
  36. Sreerama N., Woody R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000 Dec 15;287(2):252–260. doi: 10.1006/abio.2000.4880. [DOI] [PubMed] [Google Scholar]
  37. Sreerama N., Woody R. W. Poly(pro)II helices in globular proteins: identification and circular dichroic analysis. Biochemistry. 1994 Aug 23;33(33):10022–10025. doi: 10.1021/bi00199a028. [DOI] [PubMed] [Google Scholar]
  38. Sreerama N., Woody R. W. Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods. J Mol Biol. 1994 Sep 30;242(4):497–507. doi: 10.1006/jmbi.1994.1597. [DOI] [PubMed] [Google Scholar]
  39. Uversky Vladimir N. What does it mean to be natively unfolded? Eur J Biochem. 2002 Jan;269(1):2–12. doi: 10.1046/j.0014-2956.2001.02649.x. [DOI] [PubMed] [Google Scholar]
  40. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  41. Wang K., Forbes J. G., Jin A. J. Single molecule measurements of titin elasticity. Prog Biophys Mol Biol. 2001;77(1):1–44. doi: 10.1016/s0079-6107(01)00009-8. [DOI] [PubMed] [Google Scholar]
  42. Wang K., McClure J., Tu A. Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3698–3702. doi: 10.1073/pnas.76.8.3698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang M. D., Yin H., Landick R., Gelles J., Block S. M. Stretching DNA with optical tweezers. Biophys J. 1997 Mar;72(3):1335–1346. doi: 10.1016/S0006-3495(97)78780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yamasaki R., Berri M., Wu Y., Trombitás K., McNabb M., Kellermayer M. S., Witt C., Labeit D., Labeit S., Greaser M. Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J. 2001 Oct;81(4):2297–2313. doi: 10.1016/S0006-3495(01)75876-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Young P., Ferguson C., Bañuelos S., Gautel M. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J. 1998 Mar 16;17(6):1614–1624. doi: 10.1093/emboj/17.6.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES