Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 15;374(Pt 3):639–646. doi: 10.1042/BJ20030674

Biochemical and three-dimensional-structural study of the specific inhibition of protein kinase CK2 by [5-oxo-5,6-dihydroindolo-(1,2-a)quinazolin-7-yl]acetic acid (IQA).

Stefania Sarno 1, Erika de Moliner 1, Maria Ruzzene 1, Mario A Pagano 1, Roberto Battistutta 1, Jenny Bain 1, Doriano Fabbro 1, Joseph Schoepfer 1, Matthew Elliott 1, Pascal Furet 1, Flavio Meggio 1, Giuseppe Zanotti 1, Lorenzo A Pinna 1
PMCID: PMC1223641  PMID: 12816539

Abstract

IQA [[5-oxo-5,6-dihydro-indolo(1,2-a)quinazolin-7-yl]acetic acid] is a novel ATP/GTP site-directed inhibitor of CK2 ('casein kinase 2'), a pleiotropic and constitutively active protein kinase whose activity is abnormally high in transformed cells. The K (i) value of IQA (0.17 microM) is lower than those of other CK2 inhibitors reported so far. Tested at 10 microM concentration in the presence of 100 microM ATP, IQA almost suppresses CK2 activity in vitro, whereas it is ineffective or weakly effective on a panel of 44 protein kinases and on phosphoinositide 3-kinase. In comparison, other CK2 inhibitors, notably apigenin and quercetin, are more promiscuous. The in vivo efficacy of IQA has been assessed by using the fact that treatment of Jurkat cells with IQA inhibits endogenous CK2 in a dose-dependent manner. IQA has been co-crystallized with maize CK2alpha, which is >70% identical with its human homologue, and the structure of the complex has been determined at 1.68 A (1 A=0.1 nm) resolution. The inhibitor lies in the same plane occupied by the purine moiety of ATP with its more hydrophobic side facing the hinge region. Major contributions to the interaction are provided by hydrophobic forces and non-polar interactions involving the aromatic portion of the inhibitor and the hydrophobic residues surrounding the ATP-binding pocket, with special reference to the side chains of V53 (Val53), I66, M163 and I174. Consequently, mutants of human CK2alpha in which either V66 (the homologue of maize CK2alpha I66) or I174 is replaced by alanine are considerably less sensitive to IQA inhibition when compared with wild-type. These results provide new tools for deciphering the enigmatic role of CK2 in living cells and may pave the way for the development of drugs depending on CK2 activity.

Full Text

The Full Text of this article is available as a PDF (179.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agullo G., Gamet-Payrastre L., Manenti S., Viala C., Rémésy C., Chap H., Payrastre B. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmacol. 1997 Jun 1;53(11):1649–1657. doi: 10.1016/s0006-2952(97)82453-7. [DOI] [PubMed] [Google Scholar]
  2. Ahmed Khalil, Gerber Delphine A., Cochet Claude. Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol. 2002 May;12(5):226–230. doi: 10.1016/s0962-8924(02)02279-1. [DOI] [PubMed] [Google Scholar]
  3. Battistutta R., De Moliner E., Sarno S., Zanotti G., Pinna L. A. Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci. 2001 Nov;10(11):2200–2206. doi: 10.1110/ps.19601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Battistutta R., Sarno S., De Moliner E., Papinutto E., Zanotti G., Pinna L. A. The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J Biol Chem. 2000 Sep 22;275(38):29618–29622. doi: 10.1074/jbc.M004257200. [DOI] [PubMed] [Google Scholar]
  5. Boldyreff B., Meggio F., Pinna L. A., Issinger O. G. Casein kinase-2 structure-function relationship: creation of a set of mutants of the beta subunit that variably surrogate the wildtype beta subunit function. Biochem Biophys Res Commun. 1992 Oct 15;188(1):228–234. doi: 10.1016/0006-291x(92)92374-7. [DOI] [PubMed] [Google Scholar]
  6. Brunati A. M., Contri A., Muenchbach M., James P., Marin O., Pinna L. A. GRP94 (endoplasmin) co-purifies with and is phosphorylated by Golgi apparatus casein kinase. FEBS Lett. 2000 Apr 14;471(2-3):151–155. doi: 10.1016/s0014-5793(00)01378-8. [DOI] [PubMed] [Google Scholar]
  7. Brunati A. M., James P., Donella-Deana A., Matoskova B., Robbins K. C., Pinna L. A. Isolation and identification of two proto-oncogene products related to c-fgr and fyn in a tyrosine-protein-kinase fraction of rat spleen. Eur J Biochem. 1993 Aug 15;216(1):323–327. doi: 10.1111/j.1432-1033.1993.tb18149.x. [DOI] [PubMed] [Google Scholar]
  8. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  9. Critchfield J. W., Coligan J. E., Folks T. M., Butera S. T. Casein kinase II is a selective target of HIV-1 transcriptional inhibitors. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6110–6115. doi: 10.1073/pnas.94.12.6110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Moliner Erika, Moro Stefano, Sarno Stefania, Zagotto Giuseppe, Zanotti Giuseppe, Pinna Lorenzo A., Battistutta Roberto. Inhibition of protein kinase CK2 by anthraquinone-related compounds. A structural insight. J Biol Chem. 2002 Nov 4;278(3):1831–1836. doi: 10.1074/jbc.M209367200. [DOI] [PubMed] [Google Scholar]
  12. Donella-Deana A., James P., Staudenmann W., Cesaro L., Marin O., Brunati A. M., Ruzzene M., Pinna L. A. Isolation from spleen of a 57-kDa protein substrate of the tyrosine kinase Lyn. Identification as a protein related to protein disulfide-isomerase and localisation of the phosphorylation sites. Eur J Biochem. 1996 Jan 15;235(1-2):18–25. doi: 10.1111/j.1432-1033.1996.00018.x. [DOI] [PubMed] [Google Scholar]
  13. Gray Alexander, Olsson Henric, Batty Ian H., Priganica Larisa, Peter Downes C. Nonradioactive methods for the assay of phosphoinositide 3-kinases and phosphoinositide phosphatases and selective detection of signaling lipids in cell and tissue extracts. Anal Biochem. 2003 Feb 15;313(2):234–245. doi: 10.1016/s0003-2697(02)00607-3. [DOI] [PubMed] [Google Scholar]
  14. Guerra B., Issinger O. G. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis. 1999 Feb;20(2):391–408. doi: 10.1002/(SICI)1522-2683(19990201)20:2<391::AID-ELPS391>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  15. Guerra B., Niefind K., Pinna L. A., Schomburg D., Issinger O. G. Expression, purification and crystallization of the catalytic subunit of protein kinase CK2 from Zea mays. Acta Crystallogr D Biol Crystallogr. 1998 Jan 1;54(Pt 1):143–145. doi: 10.1107/s0907444997010184. [DOI] [PubMed] [Google Scholar]
  16. Guo C., Yu S., Davis A. T., Wang H., Green J. E., Ahmed K. A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells. J Biol Chem. 2000 Nov 7;276(8):5992–5999. doi: 10.1074/jbc.M004862200. [DOI] [PubMed] [Google Scholar]
  17. Jayasuriya H., Koonchanok N. M., Geahlen R. L., McLaughlin J. L., Chang C. J. Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod. 1992 May;55(5):696–698. doi: 10.1021/np50083a026. [DOI] [PubMed] [Google Scholar]
  18. Kleywegt G. J., Jones T. A. Databases in protein crystallography. Acta Crystallogr D Biol Crystallogr. 1998 Nov 1;54(Pt 6 1):1119–1131. doi: 10.1107/s0907444998007100. [DOI] [PubMed] [Google Scholar]
  19. Litchfield David W. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J. 2003 Jan 1;369(Pt 1):1–15. doi: 10.1042/BJ20021469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Meggio F., Deana A. D., Pinna L. A. Endogenous phosphate acceptor proteins for rat liver cytosolic casein kinases. J Biol Chem. 1981 Dec 10;256(23):11958–11961. [PubMed] [Google Scholar]
  21. Meggio F., Donella Deana A., Ruzzene M., Brunati A. M., Cesaro L., Guerra B., Meyer T., Mett H., Fabbro D., Furet P. Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur J Biochem. 1995 Nov 15;234(1):317–322. doi: 10.1111/j.1432-1033.1995.317_c.x. [DOI] [PubMed] [Google Scholar]
  22. Meggio F., Shugar D., Pinna L. A. Ribofuranosyl-benzimidazole derivatives as inhibitors of casein kinase-2 and casein kinase-1. Eur J Biochem. 1990 Jan 12;187(1):89–94. doi: 10.1111/j.1432-1033.1990.tb15280.x. [DOI] [PubMed] [Google Scholar]
  23. Meggio Flavio, Pinna Lorenzo A. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 2003 Mar;17(3):349–368. doi: 10.1096/fj.02-0473rev. [DOI] [PubMed] [Google Scholar]
  24. Niefind K., Guerra B., Ermakowa I., Issinger O. G. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J. 2001 Oct 1;20(19):5320–5331. doi: 10.1093/emboj/20.19.5320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Niefind K., Pütter M., Guerra B., Issinger O. G., Schomburg D. GTP plus water mimic ATP in the active site of protein kinase CK2. Nat Struct Biol. 1999 Dec;6(12):1100–1103. doi: 10.1038/70033. [DOI] [PubMed] [Google Scholar]
  26. Padmanabha R., Chen-Wu J. L., Hanna D. E., Glover C. V. Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Aug;10(8):4089–4099. doi: 10.1128/mcb.10.8.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pinna Lorenzo A. Protein kinase CK2: a challenge to canons. J Cell Sci. 2002 Oct 15;115(Pt 20):3873–3878. doi: 10.1242/jcs.00074. [DOI] [PubMed] [Google Scholar]
  28. Ruzzene Maria, Penzo Daniele, Pinna Lorenzo A. Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J. 2002 May 15;364(Pt 1):41–47. doi: 10.1042/bj3640041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sarno S., Reddy H., Meggio F., Ruzzene M., Davies S. P., Donella-Deana A., Shugar D., Pinna L. A. Selectivity of 4,5,6,7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2 ('casein kinase-2'). FEBS Lett. 2001 May 4;496(1):44–48. doi: 10.1016/s0014-5793(01)02404-8. [DOI] [PubMed] [Google Scholar]
  30. Sarno S., Vaglio P., Meggio F., Issinger O. G., Pinna L. A. Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. J Biol Chem. 1996 May 3;271(18):10595–10601. doi: 10.1074/jbc.271.18.10595. [DOI] [PubMed] [Google Scholar]
  31. Sarno Stefania, Ghisellini Paola, Pinna Lorenzo A. Unique activation mechanism of protein kinase CK2. The N-terminal segment is essential for constitutive activity of the catalytic subunit but not of the holoenzyme. J Biol Chem. 2002 Apr 15;277(25):22509–22514. doi: 10.1074/jbc.M200486200. [DOI] [PubMed] [Google Scholar]
  32. Sarno Stefania, Moro Stefano, Meggio Flavio, Zagotto Giuseppe, Dal Ben Diego, Ghisellini Paola, Battistutta Roberto, Zanotti Giuseppe, Pinna Lorenzo A. Toward the rational design of protein kinase casein kinase-2 inhibitors. Pharmacol Ther. 2002 Feb-Mar;93(2-3):159–168. doi: 10.1016/s0163-7258(02)00185-7. [DOI] [PubMed] [Google Scholar]
  33. Szyszka R., Grankowski N., Felczak K., Shugar D. Halogenated benzimidazoles and benzotriazoles as selective inhibitors of protein kinases CK I and CK II from Saccharomyces cerevisiae and other sources. Biochem Biophys Res Commun. 1995 Mar 8;208(1):418–424. doi: 10.1006/bbrc.1995.1354. [DOI] [PubMed] [Google Scholar]
  34. Tawfic S., Yu S., Wang H., Faust R., Davis A., Ahmed K. Protein kinase CK2 signal in neoplasia. Histol Histopathol. 2001 Apr;16(2):573–582. doi: 10.14670/HH-16.573. [DOI] [PubMed] [Google Scholar]
  35. Vangrevelinghe Eric, Zimmermann Kaspar, Schoepfer Joseph, Portmann Robert, Fabbro Doriano, Furet Pascal. Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J Med Chem. 2003 Jun 19;46(13):2656–2662. doi: 10.1021/jm030827e. [DOI] [PubMed] [Google Scholar]
  36. Yim H., Lee Y. H., Lee C. H., Lee S. K. Emodin, an anthraquinone derivative isolated from the rhizomes of Rheum palmatum, selectively inhibits the activity of casein kinase II as a competitive inhibitor. Planta Med. 1999 Feb;65(1):9–13. doi: 10.1055/s-1999-13953. [DOI] [PubMed] [Google Scholar]
  37. Zandomeni R., Zandomeni M. C., Shugar D., Weinmann R. Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol Chem. 1986 Mar 5;261(7):3414–3419. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES