Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 15;374(Pt 3):755–760. doi: 10.1042/BJ20030145

The directionality of chitin biosynthesis: a revisit.

Tomoya Imai 1, Takeshi Watanabe 1, Toshifumi Yui 1, Junji Sugiyama 1
PMCID: PMC1223643  PMID: 12816541

Abstract

The molecular directionality of chitin biosynthesis was investigated by transmission electron microscopy (TEM) using electron crystallography methods applied to reducing-end-labelled beta-chitin microcrystals from vestimentiferan Lamellibrachia satsuma tubes and nascent beta-chitin microfibrils from the diatom Thalassiosira weissflogii. The data allowed confirmation that the microfibrils were extruded with their reducing end away from the biosynthetic loci, an orientation consistent only with elongation through polymerization at the non-reducing end of the growing chains. Such a chain-extension mechanism, which has also been demonstrated for cellulose and hyaluronan, appears to be general for glycosyltransferases that belong to the GT2 (glycosyl transferase 2) family. The data also allowed confirmation that in beta-chitin the chains are crystallized in a 'parallel-up' mode, in contrast with hypotheses proposed in previous reports.

Full Text

The Full Text of this article is available as a PDF (201.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asplund T., Brinck J., Suzuki M., Briskin M. J., Heldin P. Characterization of hyaluronan synthase from a human glioma cell line. Biochim Biophys Acta. 1998 May 8;1380(3):377–388. doi: 10.1016/s0304-4165(98)00010-5. [DOI] [PubMed] [Google Scholar]
  2. Campbell J. A., Davies G. J., Bulone V., Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997 Sep 15;326(Pt 3):929–939. doi: 10.1042/bj3260929u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charnock S. J., Davies G. J. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry. 1999 May 18;38(20):6380–6385. doi: 10.1021/bi990270y. [DOI] [PubMed] [Google Scholar]
  4. Charnock S. J., Henrissat B., Davies G. J. Three-dimensional structures of UDP-sugar glycosyltransferases illuminate the biosynthesis of plant polysaccharides. Plant Physiol. 2001 Feb;125(2):527–531. doi: 10.1104/pp.125.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen E. Chitin synthesis and inhibition: a revisit. Pest Manag Sci. 2001 Oct;57(10):946–950. doi: 10.1002/ps.363. [DOI] [PubMed] [Google Scholar]
  6. DeAngelis P. L. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. J Biol Chem. 1999 Sep 10;274(37):26557–26562. doi: 10.1074/jbc.274.37.26557. [DOI] [PubMed] [Google Scholar]
  7. Delmer Deborah P. CELLULOSE BIOSYNTHESIS: Exciting Times for A Difficult Field of Study. Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50(NaN):245–276. doi: 10.1146/annurev.arplant.50.1.245. [DOI] [PubMed] [Google Scholar]
  8. Gardner K. H., Blackwell J. Refinement of the structure of beta-chitin. Biopolymers. 1975 Aug;14(8):1581–1595. doi: 10.1002/bip.1975.360140804. [DOI] [PubMed] [Google Scholar]
  9. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herth W., Barthlott W. The site of beta-chitin fibril formation in centric diatoms. I. Pores and fibril formation. J Ultrastruct Res. 1979 Jul;68(1):6–15. doi: 10.1016/s0022-5320(79)90137-0. [DOI] [PubMed] [Google Scholar]
  11. Herth W. The site of beta-chitin fibril formation in centric diatoms. II. The chitin-forming cytoplasmic structures. J Ultrastruct Res. 1979 Jul;68(1):16–27. doi: 10.1016/s0022-5320(79)90138-2. [DOI] [PubMed] [Google Scholar]
  12. Herth W., Zugenmaier P. Ultrastructure of the chitin fibrils of the centric diatom Cyclotella cryptica. J Ultrastruct Res. 1977 Nov;61(2):230–239. doi: 10.1016/s0022-5320(77)80090-7. [DOI] [PubMed] [Google Scholar]
  13. Imai Tomoya, Watanabe Takeshi, Yui Toshifumi, Sugiyama Junji. Directional degradation of beta-chitin by chitinase A1 revealed by a novel reducing end labelling technique. FEBS Lett. 2002 Jan 16;510(3):201–205. doi: 10.1016/s0014-5793(01)03249-5. [DOI] [PubMed] [Google Scholar]
  14. Kamst E., Bakkers J., Quaedvlieg N. E., Pilling J., Kijne J. W., Lugtenberg B. J., Spaink H. P. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue. Biochemistry. 1999 Mar 30;38(13):4045–4052. doi: 10.1021/bi982531u. [DOI] [PubMed] [Google Scholar]
  15. Koyama M., Helbert W., Imai T., Sugiyama J., Henrissat B. Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9091–9095. doi: 10.1073/pnas.94.17.9091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lai-Kee-Him Joséphine, Chanzy Henri, Müller Martin, Putaux Jean-Luc, Imai Tomoya, Bulone Vincent. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem. 2002 Jul 26;277(40):36931–36939. doi: 10.1074/jbc.M203530200. [DOI] [PubMed] [Google Scholar]
  17. Merz R. A., Horsch M., Nyhlén L. E., Rast D. M. Biochemistry of chitin synthase. EXS. 1999;87:9–37. doi: 10.1007/978-3-0348-8757-1_2. [DOI] [PubMed] [Google Scholar]
  18. Pedersen L. C., Tsuchida K., Kitagawa H., Sugahara K., Darden T. A., Negishi M. Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J Biol Chem. 2000 Nov 3;275(44):34580–34585. doi: 10.1074/jbc.M007399200. [DOI] [PubMed] [Google Scholar]
  19. Peng Liangcai, Kawagoe Yasushi, Hogan Pat, Delmer Deborah. Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science. 2002 Jan 4;295(5552):147–150. doi: 10.1126/science.1064281. [DOI] [PubMed] [Google Scholar]
  20. Roach P. J., Skurat A. V. Self-glucosylating initiator proteins and their role in glycogen biosynthesis. Prog Nucleic Acid Res Mol Biol. 1997;57:289–316. doi: 10.1016/s0079-6603(08)60284-6. [DOI] [PubMed] [Google Scholar]
  21. Saxena I. M., Brown R. M., Jr, Fevre M., Geremia R. A., Henrissat B. Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol. 1995 Mar;177(6):1419–1424. doi: 10.1128/jb.177.6.1419-1424.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sugiyama J., Boisset C., Hashimoto M., Watanabe T. Molecular directionality of beta-chitin biosynthesis. J Mol Biol. 1999 Feb 12;286(1):247–255. doi: 10.1006/jmbi.1998.2458. [DOI] [PubMed] [Google Scholar]
  23. Tarbouriech N., Charnock S. J., Davies G. J. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. J Mol Biol. 2001 Dec 7;314(4):655–661. doi: 10.1006/jmbi.2001.5159. [DOI] [PubMed] [Google Scholar]
  24. Watanabe T., Oyanagi W., Suzuki K., Tanaka H. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J Bacteriol. 1990 Jul;172(7):4017–4022. doi: 10.1128/jb.172.7.4017-4022.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watanabe T., Suzuki K., Oyanagi W., Ohnishi K., Tanaka H. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J Biol Chem. 1990 Sep 15;265(26):15659–15665. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES