Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 15;374(Pt 3):613–624. doi: 10.1042/BJ20030507

Spectrin alpha II and beta II isoforms interact with high affinity at the tetramerization site.

Paola A Bignone 1, Anthony J Baines 1
PMCID: PMC1223645  PMID: 12820899

Abstract

Spectrin tetramers form by the interaction of two alpha-beta dimers through two helices close to the C-terminus of a beta subunit and a single helix at the N-terminus of an alpha subunit. Early work on spectrin from solid tissues (typified by alphaII and betaII polypeptides) indicated that it forms a more stable tetramer than erythroid spectrin (alphaI-betaI). In the present study, we have probed the molecular basis of this phenomenon. We have quantified the interactions of N-terminal regions of two human alpha polypeptides (alphaI and alphaII) with the C-terminal regions of three beta isoforms (betaISigma1, betaIISigma1 and betaIISigma2). alphaII binds either betaII form with a much higher affinity than alphaI binds betaISigma1 ( K (d) values of 5-9 nM and 840 nM respectively at 25 degrees C). betaIISigma1 and betaIISigma2 are splice variants with different C-terminal extensions outside the tetramerization site: these extensions affect the rate rather than the affinity of alpha subunit interaction. alphaII spectrin interacts with each beta subunit with higher affinity than alphaI, and the betaII polypeptides have higher affinities for both alpha chains than betaISigma1. The first full repeat of the alpha subunit has a major role in determining affinity. Enthalpy changes in the alphaII-betaIISigma2 interaction are large, but the entropy change is comparatively small. The interaction is substantially reduced, but not eliminated, by concentrated salt solutions. The high affinity and slow overall kinetics of association and dissociation of alphaII-betaII spectrin may suit it well to a role in strengthening cell junctions and providing stable anchor points for transmembrane proteins at points specified by cell-adhesion molecules.

Full Text

The Full Text of this article is available as a PDF (414.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An Xiuli, Lecomte M. Christine, Chasis Joel Anne, Mohandas Narla, Gratzer Walter. Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane. J Biol Chem. 2002 Jun 24;277(35):31796–31800. doi: 10.1074/jbc.M204567200. [DOI] [PubMed] [Google Scholar]
  2. Begg G. E., Morris M. B., Ralston G. B. Comparison of the salt-dependent self-association of brain and erythroid spectrin. Biochemistry. 1997 Jun 10;36(23):6977–6985. doi: 10.1021/bi970186n. [DOI] [PubMed] [Google Scholar]
  3. Bennett V., Baines A. J. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev. 2001 Jul;81(3):1353–1392. doi: 10.1152/physrev.2001.81.3.1353. [DOI] [PubMed] [Google Scholar]
  4. Bennett V., Davis J., Fowler W. E. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature. 1982 Sep 9;299(5879):126–131. doi: 10.1038/299126a0. [DOI] [PubMed] [Google Scholar]
  5. Cherry L., Menhart N., Fung L. W. Interactions of the alpha-spectrin N-terminal region with beta-spectrin. Implications for the spectrin tetramerization reaction. J Biol Chem. 1999 Jan 22;274(4):2077–2084. doi: 10.1074/jbc.274.4.2077. [DOI] [PubMed] [Google Scholar]
  6. Clark M. B., Ma Y., Bloom M. L., Barker J. E., Zagon I. S., Zimmer W. E., Goodman S. R. Brain alpha erythroid spectrin: identification, compartmentalization, and beta spectrin associations. Brain Res. 1994 Nov 14;663(2):223–236. doi: 10.1016/0006-8993(94)91267-x. [DOI] [PubMed] [Google Scholar]
  7. Cole N., Ralston G. B. The effects of ionic strength on the self-association of human spectrin. Biochim Biophys Acta. 1992 May 22;1121(1-2):23–30. doi: 10.1016/0167-4838(92)90332-8. [DOI] [PubMed] [Google Scholar]
  8. Davis J., Bennett V. Brain spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits. J Biol Chem. 1983 Jun 25;258(12):7757–7766. [PubMed] [Google Scholar]
  9. DeSilva T. M., Peng K. C., Speicher K. D., Speicher D. W. Analysis of human red cell spectrin tetramer (head-to-head) assembly using complementary univalent peptides. Biochemistry. 1992 Nov 10;31(44):10872–10878. doi: 10.1021/bi00159a030. [DOI] [PubMed] [Google Scholar]
  10. Deng H., Lee J. K., Goldstein L. S., Branton D. Drosophila development requires spectrin network formation. J Cell Biol. 1995 Jan;128(1-2):71–79. doi: 10.1083/jcb.128.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Djinovic-Carugo Kristina, Gautel Mathias, Ylänne Jari, Young Paul. The spectrin repeat: a structural platform for cytoskeletal protein assemblies. FEBS Lett. 2002 Feb 20;513(1):119–123. doi: 10.1016/s0014-5793(01)03304-x. [DOI] [PubMed] [Google Scholar]
  12. Fowler V. M., Adam E. J. Spectrin redistributes to the cytosol and is phosphorylated during mitosis in cultured cells. J Cell Biol. 1992 Dec;119(6):1559–1572. doi: 10.1083/jcb.119.6.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glenney J. R., Jr, Glenney P., Weber K. Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4002–4005. doi: 10.1073/pnas.79.13.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glenney J. R., Jr, Glenney P., Weber K. F-actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule. J Biol Chem. 1982 Aug 25;257(16):9781–9787. [PubMed] [Google Scholar]
  15. Hayes N. V., Scott C., Heerkens E., Ohanian V., Maggs A. M., Pinder J. C., Kordeli E., Baines A. J. Identification of a novel C-terminal variant of beta II spectrin: two isoforms of beta II spectrin have distinct intracellular locations and activities. J Cell Sci. 2000 Jun;113(Pt 11):2023–2034. doi: 10.1242/jcs.113.11.2023. [DOI] [PubMed] [Google Scholar]
  16. Kennedy S. P., Weed S. A., Forget B. G., Morrow J. S. A partial structural repeat forms the heterodimer self-association site of all beta-spectrins. J Biol Chem. 1994 Apr 15;269(15):11400–11408. [PubMed] [Google Scholar]
  17. Kotula L., DeSilva T. M., Speicher D. W., Curtis P. J. Functional characterization of recombinant human red cell alpha-spectrin polypeptides containing the tetramer binding site. J Biol Chem. 1993 Jul 15;268(20):14788–14793. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lecomte M. C., Nicolas G., Dhermy D., Pinder J. C., Gratzer W. B. Properties of normal and mutant polypeptide fragments from the dimer self-association sites of human red cell spectrin. Eur Biophys J. 1999;28(3):208–215. doi: 10.1007/s002490050201. [DOI] [PubMed] [Google Scholar]
  20. Luo Bing-Hao, Mehboob Shahila, Hurtuk Michael G., Pipalia N. H., Fung L. W-M. Important region in the beta-spectrin C-terminus for spectrin tetramer formation. Eur J Haematol. 2002 Feb;68(2):73–79. doi: 10.1034/j.1600-0609.2002.01569.x. [DOI] [PubMed] [Google Scholar]
  21. MacDonald R. I., Musacchio A., Holmgren R. A., Saraste M. Invariant tryptophan at a shielded site promotes folding of the conformational unit of spectrin. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1299–1303. doi: 10.1073/pnas.91.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mehboob S., Luo B. H., Patel B. M., Fung L. W. alpha beta Spectrin coiled coil association at the tetramerization site. Biochemistry. 2001 Oct 16;40(41):12457–12464. doi: 10.1021/bi010984k. [DOI] [PubMed] [Google Scholar]
  23. Morrow J. S., Marchesi V. T. Self-assembly of spectrin oligomers in vitro: a basis for a dynamic cytoskeleton. J Cell Biol. 1981 Feb;88(2):463–468. doi: 10.1083/jcb.88.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Myszka D. G. Kinetic, equilibrium, and thermodynamic analysis of macromolecular interactions with BIACORE. Methods Enzymol. 2000;323:325–340. doi: 10.1016/s0076-6879(00)23372-7. [DOI] [PubMed] [Google Scholar]
  25. Nelson W. J., Veshnock P. J. Modulation of fodrin (membrane skeleton) stability by cell-cell contact in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1987 Jun;104(6):1527–1537. doi: 10.1083/jcb.104.6.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nicolas G., Pedroni S., Fournier C., Gautero H., Craescu C., Dhermy D., Lecomte M. C. Spectrin self-association site: characterization and study of beta-spectrin mutations associated with hereditary elliptocytosis. Biochem J. 1998 May 15;332(Pt 1):81–89. doi: 10.1042/bj3320081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Park Sunghyouk, Caffrey Michael S., Johnson Michael E., Fung Leslie W-M. Solution structural studies on human erythrocyte alpha-spectrin tetramerization site. J Biol Chem. 2003 Apr 1;278(24):21837–21844. doi: 10.1074/jbc.M300617200. [DOI] [PubMed] [Google Scholar]
  29. Sahr K. E., Laurila P., Kotula L., Scarpa A. L., Coupal E., Leto T. L., Linnenbach A. J., Winkelmann J. C., Speicher D. W., Marchesi V. T. The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin. J Biol Chem. 1990 Mar 15;265(8):4434–4443. [PubMed] [Google Scholar]
  30. Scott C., Phillips G. W., Baines A. J. Properties of the C-terminal domain of 4.1 proteins. Eur J Biochem. 2001 Jul;268(13):3709–3717. doi: 10.1046/j.1432-1327.2001.02276.x. [DOI] [PubMed] [Google Scholar]
  31. Shahbakhti F., Gratzer W. B. Analysis of the self-association of human red cell spectrin. Biochemistry. 1986 Oct 7;25(20):5969–5975. doi: 10.1021/bi00368a020. [DOI] [PubMed] [Google Scholar]
  32. Speicher D. W., Davis G., Marchesi V. T. Structure of human erythrocyte spectrin. II. The sequence of the alpha-I domain. J Biol Chem. 1983 Dec 25;258(24):14938–14947. [PubMed] [Google Scholar]
  33. Speicher D. W., DeSilva T. M., Speicher K. D., Ursitti J. A., Hembach P., Weglarz L. Location of the human red cell spectrin tetramer binding site and detection of a related "closed" hairpin loop dimer using proteolytic footprinting. J Biol Chem. 1993 Feb 25;268(6):4227–4235. [PubMed] [Google Scholar]
  34. Tse W. T., Lecomte M. C., Costa F. F., Garbarz M., Feo C., Boivin P., Dhermy D., Forget B. G. Point mutation in the beta-spectrin gene associated with alpha I/74 hereditary elliptocytosis. Implications for the mechanism of spectrin dimer self-association. J Clin Invest. 1990 Sep;86(3):909–916. doi: 10.1172/JCI114792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tse W. T., Lux S. E. Red blood cell membrane disorders. Br J Haematol. 1999 Jan;104(1):2–13. doi: 10.1111/j.1365-2141.1999.01130.x. [DOI] [PubMed] [Google Scholar]
  36. Ungewickell E., Gratzer W. Self-association of human spectrin. A thermodynamic and kinetic study. Eur J Biochem. 1978 Aug 1;88(2):379–385. doi: 10.1111/j.1432-1033.1978.tb12459.x. [DOI] [PubMed] [Google Scholar]
  37. Yoshino H., Marchesi V. T. Isolation of spectrin subunits and reassociation in vitro. Analysis by fluorescence polarization. J Biol Chem. 1984 Apr 10;259(7):4496–4500. [PubMed] [Google Scholar]
  38. Zeder-Lutz G., Zuber E., Witz J., Van Regenmortel M. H. Thermodynamic analysis of antigen-antibody binding using biosensor measurements at different temperatures. Anal Biochem. 1997 Mar 1;246(1):123–132. doi: 10.1006/abio.1996.9999. [DOI] [PubMed] [Google Scholar]
  39. Zhang Z., Weed S. A., Gallagher P. G., Morrow J. S. Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain. Blood. 2001 Sep 15;98(6):1645–1653. doi: 10.1182/blood.v98.6.1645. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES