Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Sep 15;374(Pt 3):799–805. doi: 10.1042/BJ20030533

Ribonuclease III-mediated processing of specific Neisseria meningitidis mRNAs.

Eliana De Gregorio 1, Chiara Abrescia 1, M Stella Carlomagno 1, Pier Paolo Di Nocera 1
PMCID: PMC1223648  PMID: 12826014

Abstract

Approx. 2% of the Neisseria meningitidis genome consists of small DNA insertion sequences known as Correia or nemis elements, which feature TIRs (terminal inverted repeats) of 26-27 bp in length. Elements interspersed with coding regions are co-transcribed with flanking genes into mRNAs, processed at double-stranded RNA structures formed by TIRs. N. meningitidis RNase III (endoribonuclease III) is sufficient to process nemis+ RNAs. RNA hairpins formed by nemis with the same termini (26/26 and 27/27 repeats) are cleaved. By contrast, bulged hairpins formed by 26/27 repeats inhibit cleavage, both in vitro and in vivo. In electrophoretic mobility shift assays, all hairpin types formed similar retarded complexes upon incubation with RNase III. The levels of corresponding nemis+ and nemis- mRNAs, and the relative stabilities of RNA segments processed from nemis+ transcripts in vitro, may both vary significantly.

Full Text

The Full Text of this article is available as a PDF (228.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrescia Chiara, De Gregorio Eliana, Frontini Mattia, Mantovani Roberto, Di Nocera Pierpaolo. A novel intragenic sequence enhances initiator-dependent transcription in human embryonic kidney 293 cells. J Biol Chem. 2002 Mar 26;277(22):19594–19599. doi: 10.1074/jbc.M201193200. [DOI] [PubMed] [Google Scholar]
  2. Black C. G., Fyfe J. A., Davies J. K. A promoter associated with the neisserial repeat can be used to transcribe the uvrB gene from Neisseria gonorrhoeae. J Bacteriol. 1995 Apr;177(8):1952–1958. doi: 10.1128/jb.177.8.1952-1958.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buisine Nicolas, Tang Christoph M., Chalmers Ronald. Transposon-like Correia elements: structure, distribution and genetic exchange between pathogenic Neisseria sp. FEBS Lett. 2002 Jul 3;522(1-3):52–58. doi: 10.1016/s0014-5793(02)02882-x. [DOI] [PubMed] [Google Scholar]
  4. Carlomagno M. S., Nappo A. The antiterminator NusB enhances termination at a sub-optimal Rho site. J Mol Biol. 2001 May 25;309(1):19–28. doi: 10.1006/jmbi.2001.4678. [DOI] [PubMed] [Google Scholar]
  5. Coburn G. A., Mackie G. A. Degradation of mRNA in Escherichia coli: an old problem with some new twists. Prog Nucleic Acid Res Mol Biol. 1999;62:55–108. doi: 10.1016/s0079-6603(08)60505-x. [DOI] [PubMed] [Google Scholar]
  6. Correia F. F., Inouye S., Inouye M. A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. J Biol Chem. 1988 Sep 5;263(25):12194–12198. [PubMed] [Google Scholar]
  7. Dasgupta S., Fernandez L., Kameyama L., Inada T., Nakamura Y., Pappas A., Court D. L. Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III--the effect of dsRNA binding on gene expression. Mol Microbiol. 1998 May;28(3):629–640. doi: 10.1046/j.1365-2958.1998.00828.x. [DOI] [PubMed] [Google Scholar]
  8. De Gregorio Eliana, Abrescia Chiara, Carlomagno M. Stella, Di Nocera Pier Paolo. Asymmetrical distribution of Neisseria miniature insertion sequence DNA repeats among pathogenic and nonpathogenic Neisseria strains. Infect Immun. 2003 Jul;71(7):4217–4221. doi: 10.1128/IAI.71.7.4217-4221.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Gregorio Eliana, Abrescia Chiara, Carlomagno M. Stella, Di Nocera Pier Paolo. The abundant class of nemis repeats provides RNA substrates for ribonuclease III in Neisseriae. Biochim Biophys Acta. 2002 Jun 7;1576(1-2):39–44. doi: 10.1016/s0167-4781(02)00290-7. [DOI] [PubMed] [Google Scholar]
  10. Feil E. J., Maiden M. C., Achtman M., Spratt B. G. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol. 1999 Nov;16(11):1496–1502. doi: 10.1093/oxfordjournals.molbev.a026061. [DOI] [PubMed] [Google Scholar]
  11. Francis F., Ramirez-Arcos S., Salimnia H., Victor C., Dillon J. R. Organization and transcription of the division cell wall (dcw) cluster in Neisseria gonorrhoeae. Gene. 2000 Jun 27;251(2):141–151. doi: 10.1016/s0378-1119(00)00200-6. [DOI] [PubMed] [Google Scholar]
  12. Hill S. A., Samuels D. S., Carlson J. H., Wilson J., Hogan D., Lubke L., Belland R. J. Integration host factor is a transcriptional cofactor of pilE in Neisseria gonorrhoeae. Mol Microbiol. 1997 Feb;23(4):649–656. doi: 10.1046/j.1365-2958.1997.2321612.x. [DOI] [PubMed] [Google Scholar]
  13. Li H. L., Chelladurai B. S., Zhang K., Nicholson A. W. Ribonuclease III cleavage of a bacteriophage T7 processing signal. Divalent cation specificity, and specific anion effects. Nucleic Acids Res. 1993 Apr 25;21(8):1919–1925. doi: 10.1093/nar/21.8.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Linz B., Schenker M., Zhu P., Achtman M. Frequent interspecific genetic exchange between commensal Neisseriae and Neisseria meningitidis. Mol Microbiol. 2000 Jun;36(5):1049–1058. doi: 10.1046/j.1365-2958.2000.01932.x. [DOI] [PubMed] [Google Scholar]
  15. Liu Shi V., Saunders Nigel J., Jeffries Alex, Rest Richard F. Genome analysis and strain comparison of correia repeats and correia repeat-enclosed elements in pathogenic Neisseria. J Bacteriol. 2002 Nov;184(22):6163–6173. doi: 10.1128/JB.184.22.6163-6173.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mahillon J., Léonard C., Chandler M. IS elements as constituents of bacterial genomes. Res Microbiol. 1999 Nov-Dec;150(9-10):675–687. doi: 10.1016/s0923-2508(99)00124-2. [DOI] [PubMed] [Google Scholar]
  17. Maiden M. C., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K., Caugant D. A. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140–3145. doi: 10.1073/pnas.95.6.3140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maiden M. C., Malorny B., Achtman M. A global gene pool in the neisseriae. Mol Microbiol. 1996 Sep;21(6):1297–1298. doi: 10.1046/j.1365-2958.1996.981457.x. [DOI] [PubMed] [Google Scholar]
  19. Mazzone M., De Gregorio E., Lavitola A., Pagliarulo C., Alifano P., Di Nocera P. P. Whole-genome organization and functional properties of miniature DNA insertion sequences conserved in pathogenic Neisseriae. Gene. 2001 Oct 31;278(1-2):211–222. doi: 10.1016/s0378-1119(01)00725-9. [DOI] [PubMed] [Google Scholar]
  20. McLaren R. S., Newbury S. F., Dance G. S., Causton H. C., Higgins C. F. mRNA degradation by processive 3'-5' exoribonucleases in vitro and the implications for prokaryotic mRNA decay in vivo. J Mol Biol. 1991 Sep 5;221(1):81–95. [PubMed] [Google Scholar]
  21. Meyer T. F., Pohlner J., van Putten J. P. Biology of the pathogenic Neisseriae. Curr Top Microbiol Immunol. 1994;192:283–317. doi: 10.1007/978-3-642-78624-2_13. [DOI] [PubMed] [Google Scholar]
  22. Morelli G., Malorny B., Müller K., Seiler A., Wang J. F., del Valle J., Achtman M. Clonal descent and microevolution of Neisseria meningitidis during 30 years of epidemic spread. Mol Microbiol. 1997 Sep;25(6):1047–1064. doi: 10.1046/j.1365-2958.1997.5211882.x. [DOI] [PubMed] [Google Scholar]
  23. Newbury S. F., Smith N. H., Higgins C. F. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell. 1987 Dec 24;51(6):1131–1143. doi: 10.1016/0092-8674(87)90599-x. [DOI] [PubMed] [Google Scholar]
  24. Newbury S. F., Smith N. H., Robinson E. C., Hiles I. D., Higgins C. F. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell. 1987 Jan 30;48(2):297–310. doi: 10.1016/0092-8674(87)90433-8. [DOI] [PubMed] [Google Scholar]
  25. Nicholson A. W. Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev. 1999 Jun;23(3):371–390. doi: 10.1111/j.1574-6976.1999.tb00405.x. [DOI] [PubMed] [Google Scholar]
  26. Parkhill J., Achtman M., James K. D., Bentley S. D., Churcher C., Klee S. R., Morelli G., Basham D., Brown D., Chillingworth T. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature. 2000 Mar 30;404(6777):502–506. doi: 10.1038/35006655. [DOI] [PubMed] [Google Scholar]
  27. Perrin Agnès, Bonacorsi Stéphane, Carbonnelle Etienne, Talibi Driss, Dessen Philippe, Nassif Xavier, Tinsley Colin. Comparative genomics identifies the genetic islands that distinguish Neisseria meningitidis, the agent of cerebrospinal meningitis, from other Neisseria species. Infect Immun. 2002 Dec;70(12):7063–7072. doi: 10.1128/IAI.70.12.7063-7072.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saunders N. J., Jeffries A. C., Peden J. F., Hood D. W., Tettelin H., Rappuoli R., Moxon E. R. Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol. 2000 Jul;37(1):207–215. doi: 10.1046/j.1365-2958.2000.02000.x. [DOI] [PubMed] [Google Scholar]
  29. Sun Y. H., Bakshi S., Chalmers R., Tang C. M. Functional genomics of Neisseria meningitidis pathogenesis. Nat Med. 2000 Nov;6(11):1269–1273. doi: 10.1038/81380. [DOI] [PubMed] [Google Scholar]
  30. Tettelin H., Saunders N. J., Heidelberg J., Jeffries A. C., Nelson K. E., Eisen J. A., Ketchum K. A., Hood D. W., Peden J. F., Dodson R. J. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science. 2000 Mar 10;287(5459):1809–1815. doi: 10.1126/science.287.5459.1809. [DOI] [PubMed] [Google Scholar]
  31. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES