Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 1;375(Pt 1):167–174. doi: 10.1042/BJ20030661

Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: role of cAMP-signalling pathway and PABP (polyadenylated-binding protein)-interacting protein (Paip) 2.

Florence Gouyon 1, Cercina Onesto 1, Veronique Dalet 1, Gilles Pages 1, Armelle Leturque 1, Edith Brot-Laroche 1
PMCID: PMC1223656  PMID: 12820898

Abstract

In intestinal cells, levels of the fructose transporter GLUT5 are increased by glucose and to a greater extent by fructose. We investigated the mechanism by which fructose increases GLUT5 expression. In Caco-2 cells, fructose and glucose increased activity of the -2500/+41 GLUT5 promoter to the same extent. cAMP also activated the GLUT5 promoter. However, if a protein kinase A inhibitor was used to block cAMP signalling, extensive GLUT5 mRNA degradation was observed, with no change in basal transcription levels demonstrating the involvement of cAMP in GLUT5 mRNA stability. Indeed, the half-life of GLUT5 mRNA was correlated ( R2=0.9913) with cellular cAMP levels. Fructose increased cAMP concentration more than glucose, accounting for the stronger effect of fructose when compared with that of glucose on GLUT5 production. We identified several complexes between GLUT5 3'-UTR RNA (where UTR stands for untranslated region) and cytosolic proteins that might participate in mRNA processing. Strong binding of a 140 kDa complex I was observed in sugar-deprived cells, with levels of binding lower in the presence of fructose and glucose by factors of 12 and 6 respectively. This may account for differences in the effects of fructose and glucose. In contrast, the amounts of two complexes of 96 and 48 kDa increased equally after stimulation with either glucose or fructose. Finally, PABP (polyadenylated-binding protein)-interacting protein 2, a destabilizing partner of PABP, was identified as a component of GLUT5 3'-UTR RNA-protein complexes. We conclude that the post-transcriptional regulation of GLUT5 by fructose involves increases in mRNA stability mediated by the cAMP pathway and Paip2 (PABP-interacting protein 2) binding.

Full Text

The Full Text of this article is available as a PDF (219.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen B., Rassov A., Westergaard N., Lundgren K. Inhibition of glycogenolysis in primary rat hepatocytes by 1, 4-dideoxy-1,4-imino-D-arabinitol. Biochem J. 1999 Sep 15;342(Pt 3):545–550. [PMC free article] [PubMed] [Google Scholar]
  2. Boado R. J., Pardridge W. M. Glucose deprivation causes posttranscriptional enhancement of brain capillary endothelial glucose transporter gene expression via GLUT1 mRNA stabilization. J Neurochem. 1993 Jun;60(6):2290–2296. doi: 10.1111/j.1471-4159.1993.tb03516.x. [DOI] [PubMed] [Google Scholar]
  3. Boado R. J., Pardridge W. M. Ten nucleotide cis element in the 3'-untranslated region of the GLUT1 glucose transporter mRNA increases gene expression via mRNA stabilization. Brain Res Mol Brain Res. 1998 Aug 15;59(1):109–113. doi: 10.1016/s0169-328x(98)00134-x. [DOI] [PubMed] [Google Scholar]
  4. Boado Ruben J., Pardridge William M. Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis-acting regulatory element. J Neurochem. 2002 Feb;80(3):552–554. doi: 10.1046/j.0022-3042.2001.00756.x. [DOI] [PubMed] [Google Scholar]
  5. Burant C. F., Flink S., DePaoli A. M., Chen J., Lee W. S., Hediger M. A., Buse J. B., Chang E. B. Small intestine hexose transport in experimental diabetes. Increased transporter mRNA and protein expression in enterocytes. J Clin Invest. 1994 Feb;93(2):578–585. doi: 10.1172/JCI117010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burant C. F., Saxena M. Rapid reversible substrate regulation of fructose transporter expression in rat small intestine and kidney. Am J Physiol. 1994 Jul;267(1 Pt 1):G71–G79. doi: 10.1152/ajpgi.1994.267.1.G71. [DOI] [PubMed] [Google Scholar]
  7. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
  8. Corpe Christopher P., Bovelander Floris J., Munoz Christina M., Hoekstra J. Hans, Simpson Ian A., Kwon Oran, Levine Mark, Burant Charles F. Cloning and functional characterization of the mouse fructose transporter, GLUT5. Biochim Biophys Acta. 2002 Jun 7;1576(1-2):191–197. doi: 10.1016/s0167-4781(02)00284-1. [DOI] [PubMed] [Google Scholar]
  9. Day D. A., Tuite M. F. Post-transcriptional gene regulatory mechanisms in eukaryotes: an overview. J Endocrinol. 1998 Jun;157(3):361–371. doi: 10.1677/joe.0.1570361. [DOI] [PubMed] [Google Scholar]
  10. Dwyer K. J., Boado R. J., Pardridge W. M. Cis-element/cytoplasmic protein interaction within the 3'-untranslated region of the GLUT1 glucose transporter mRNA. J Neurochem. 1996 Feb;66(2):449–458. doi: 10.1046/j.1471-4159.1996.66020449.x. [DOI] [PubMed] [Google Scholar]
  11. Erondu N. E., Dake B. L., Moser D. R., Lin M., Boes M., Bar R. S. Regulation of endothelial IGFBP-3 synthesis and secretion by IGF-I and TGF-beta. Growth Regul. 1996 Mar;6(1):1–9. [PubMed] [Google Scholar]
  12. Hamilton B. J., Nichols R. C., Tsukamoto H., Boado R. J., Pardridge W. M., Rigby W. F. hnRNP A2 and hnRNP L bind the 3'UTR of glucose transporter 1 mRNA and exist as a complex in vivo. Biochem Biophys Res Commun. 1999 Aug 11;261(3):646–651. doi: 10.1006/bbrc.1999.1040. [DOI] [PubMed] [Google Scholar]
  13. Kayano T., Burant C. F., Fukumoto H., Gould G. W., Fan Y. S., Eddy R. L., Byers M. G., Shows T. B., Seino S., Bell G. I. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem. 1990 Aug 5;265(22):13276–13282. [PubMed] [Google Scholar]
  14. Khaleghpour K., Kahvejian A., De Crescenzo G., Roy G., Svitkin Y. V., Imataka H., O'Connor-McCourt M., Sonenberg N. Dual interactions of the translational repressor Paip2 with poly(A) binding protein. Mol Cell Biol. 2001 Aug;21(15):5200–5213. doi: 10.1128/MCB.21.15.5200-5213.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Khaleghpour K., Svitkin Y. V., Craig A. W., DeMaria C. T., Deo R. C., Burley S. K., Sonenberg N. Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol Cell. 2001 Jan;7(1):205–216. doi: 10.1016/s1097-2765(01)00168-x. [DOI] [PubMed] [Google Scholar]
  16. Kishi K., Tanaka T., Igawa M., Takase S., Goda T. Sucrase-isomaltase and hexose transporter gene expressions are coordinately enhanced by dietary fructose in rat jejunum. J Nutr. 1999 May;129(5):953–956. doi: 10.1093/jn/129.5.953. [DOI] [PubMed] [Google Scholar]
  17. Kumagai A. K., Kang Y. S., Boado R. J., Pardridge W. M. Upregulation of blood-brain barrier GLUT1 glucose transporter protein and mRNA in experimental chronic hypoglycemia. Diabetes. 1995 Dec;44(12):1399–1404. doi: 10.2337/diab.44.12.1399. [DOI] [PubMed] [Google Scholar]
  18. Loflin P., Lever J. E. A cis-dominant cyclic nucleotide-dependent regulatory domain in the 3'-untranslated region of Na(+)/glucose cotransporter (SGLT1) mRNA. FEBS Lett. 2001 Mar 16;492(3):233–237. doi: 10.1016/s0014-5793(01)02260-8. [DOI] [PubMed] [Google Scholar]
  19. Loflin P., Lever J. E. HuR binds a cyclic nucleotide-dependent, stabilizing domain in the 3' untranslated region of Na(+)/glucose cotransporter (SGLT1) mRNA. FEBS Lett. 2001 Dec 7;509(2):267–271. doi: 10.1016/s0014-5793(01)03176-3. [DOI] [PubMed] [Google Scholar]
  20. Mahraoui L., Rodolosse A., Barbat A., Dussaulx E., Zweibaum A., Rousset M., Brot-Laroche E. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Biochem J. 1994 Mar 15;298(Pt 3):629–633. doi: 10.1042/bj2980629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mahraoui L., Takeda J., Mesonero J., Chantret I., Dussaulx E., Bell G. I., Brot-Laroche E. Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP. Biochem J. 1994 Jul 1;301(Pt 1):169–175. doi: 10.1042/bj3010169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Massillon D. Regulation of the glucose-6-phosphatase gene by glucose occurs by transcriptional and post-transcriptional mechanisms. Differential effect of glucose and xylitol. J Biol Chem. 2000 Nov 21;276(6):4055–4062. doi: 10.1074/jbc.M007939200. [DOI] [PubMed] [Google Scholar]
  23. Matosin-Matekalo M., Mesonero J. E., Laroche T. J., Lacasa M., Brot-Laroche E. Glucose and thyroid hormone co-regulate the expression of the intestinal fructose transporter GLUT5. Biochem J. 1999 Apr 15;339(Pt 2):233–239. [PMC free article] [PubMed] [Google Scholar]
  24. Mesonero J., Matosin M., Cambier D., Rodriguez-Yoldi M. J., Brot-Laroche E. Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells. Biochem J. 1995 Dec 15;312(Pt 3):757–762. doi: 10.1042/bj3120757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nachaliel N., Jain D., Hod Y. A cAMP-regulated RNA-binding protein that interacts with phosphoenolpyruvate carboxykinase (GTP) mRNA. J Biol Chem. 1993 Nov 15;268(32):24203–24209. [PubMed] [Google Scholar]
  26. Patel N. A., Chalfant C. E., Yamamoto M., Watson J. E., Eichler D. C., Cooper D. R. Acute hyperglycemia regulates transcription and posttranscriptional stability of PKCbetaII mRNA in vascular smooth muscle cells. FASEB J. 1999 Jan;13(1):103–113. doi: 10.1096/fasebj.13.1.103. [DOI] [PubMed] [Google Scholar]
  27. Patel Niketa A., Yamamoto Mayumi, Illingworth Philip, Mancu Daniel, Mebert Konrad, Chappell David S., Watson James E., Cooper Denise R. Phosphoinositide 3-kinase mediates protein kinase C beta II mRNA destabilization in rat A10 smooth muscle cell cultures exposed to high glucose. Arch Biochem Biophys. 2002 Jul 1;403(1):111–120. doi: 10.1016/S0003-9861(02)00208-4. [DOI] [PubMed] [Google Scholar]
  28. Peng H., Lever J. E. Post-transcriptional regulation of Na+/glucose cotransporter (SGTL1) gene expression in LLC-PK1 cells. Increased message stability after cyclic AMP elevation or differentiation inducer treatment. J Biol Chem. 1995 Sep 1;270(35):20536–20542. doi: 10.1074/jbc.270.35.20536. [DOI] [PubMed] [Google Scholar]
  29. Peng H., Lever J. E. Regulation of Na(+)-coupled glucose transport in LLC-PK1 cells. Message stabilization induced by cyclic AMP elevation is accompanied by binding of a M(r) = 48,000 protein to a uridine-rich domain in the 3'-untranslated region. J Biol Chem. 1995 Oct 13;270(41):23996–24003. doi: 10.1074/jbc.270.41.23996. [DOI] [PubMed] [Google Scholar]
  30. Rich T. C., Fagan K. A., Tse T. E., Schaack J., Cooper D. M., Karpen J. W. A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci U S A. 2001 Oct 16;98(23):13049–13054. doi: 10.1073/pnas.221381398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rich T. C., Tse T. E., Rohan J. G., Schaack J., Karpen J. W. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol. 2001 Jul;118(1):63–78. doi: 10.1085/jgp.118.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ross J. Control of messenger RNA stability in higher eukaryotes. Trends Genet. 1996 May;12(5):171–175. doi: 10.1016/0168-9525(96)10016-0. [DOI] [PubMed] [Google Scholar]
  33. Rousset M., Chevalier G., Rousset J. P., Dussaulx E., Zweibaum A. Presence and cell growth-related variations of glycogen in human colorectal adenocarcinoma cell lines in culture. Cancer Res. 1979 Feb;39(2 Pt 1):531–534. [PubMed] [Google Scholar]
  34. Rousset M., Laburthe M., Pinto M., Chevalier G., Rouyer-Fessard C., Dussaulx E., Trugnan G., Boige N., Brun J. L., Zweibaum A. Enterocytic differentiation and glucose utilization in the human colon tumor cell line Caco-2: modulation by forskolin. J Cell Physiol. 1985 Jun;123(3):377–385. doi: 10.1002/jcp.1041230313. [DOI] [PubMed] [Google Scholar]
  35. Schwartz J. H. The many dimensions of cAMP signaling. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13482–13484. doi: 10.1073/pnas.251533998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shirazi-Beechey S. P., Gribble S. M., Wood I. S., Tarpey P. S., Beechey R. B., Dyer J., Scott D., Barker P. J. Dietary regulation of the intestinal sodium-dependent glucose cotransporter (SGLT1). Biochem Soc Trans. 1994 Aug;22(3):655–658. doi: 10.1042/bst0220655. [DOI] [PubMed] [Google Scholar]
  37. Stefanovic B., Hellerbrand C., Holcik M., Briendl M., Aliebhaber S., Brenner D. A. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells. Mol Cell Biol. 1997 Sep;17(9):5201–5209. doi: 10.1128/mcb.17.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tillmann-Bogush M., Heaton J. H., Gelehrter T. D. Cyclic nucleotide regulation of PAI-1 mRNA stability. Identification of cytosolic proteins that interact with an a-rich sequence. J Biol Chem. 1999 Jan 8;274(2):1172–1179. doi: 10.1074/jbc.274.2.1172. [DOI] [PubMed] [Google Scholar]
  39. Tillmar Linda, Carlsson Carina, Welsh Nils. Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3'-untranslated region pyrimidine-rich sequence. J Biol Chem. 2001 Nov 5;277(2):1099–1106. doi: 10.1074/jbc.M108340200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES