Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 1;375(Pt 1):199–205. doi: 10.1042/BJ20030579

The POU homeodomain protein OCT3 as a potential transcriptional activator for fibroblast growth factor-4 (FGF-4) in human breast cancer cells.

Peixiang Wang 1, Donald R Branch 1, Meenakshi Bali 1, Gilbert A Schultz 1, Paul E Goss 1, Tianru Jin 1
PMCID: PMC1223663  PMID: 12841847

Abstract

The POU (representing a homeodomain protein family of which the founder members are Pit-1, Oct-1/2 and Unc-86) homeodomain protein OCT3/Oct-3 (where OCT stands for octamer-binding protein) is an embryonic transcription factor expressed in oocytes, embryonic stem and embryonic carcinoma cells. We have demonstrated previously that human breast cancer cells regain the ability to express OCT3 mRNA [Jin, Branch, Zhang, Qi, Youngson and Goss (1999) Int. J. Cancer 81, 104-112]. Antibodies against human OCT3 were not available when this study was conducted. By using a human OCT3-glutathione S-transferase fusion protein to affinity purify a polyclonal antibody against the mouse Oct-3, we obtained an antibody that enabled us to detect OCT3 in human breast cancer cells by Western-blot analysis. Thus we have now confirmed that OCT3 is expressed in human breast cancer cells but not in normal human breasts and in three other organs. When breast cancer cell lines were treated with all- trans -retinoic acid, OCT3 expression was repressed, associated with decreased cell proliferation. Although another POU protein Brn-3 has been shown to be a repressor for BRCA1 (breast-cancer susceptibility gene 1), OCT3 does not repress human or mouse BRCA1/Brca-1 promoters. However, OCT3 is capable of activating a fusion promoter containing the fibroblast growth factor-4 (FGF-4) enhancer element. In addition, we documented for the first time that human breast cancer cells express FGF-4 protein, and its expression could be inhibited by all- trans -retinoic acid. Furthermore, overexpressing OCT3 stimulated endogenous FGF-4 expression in MCF7 breast cancer cell line. These observations indicate that OCT3 protein is selectively expressed in human breast cancer cells, and its expression may be implicated in mammary gland tumorigenesis via up-regulating FGF-4 expression.

Full Text

The Full Text of this article is available as a PDF (235.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrosetti D. C., Basilico C., Dailey L. Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol. 1997 Nov;17(11):6321–6329. doi: 10.1128/mcb.17.11.6321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambrosetti D. C., Schöler H. R., Dailey L., Basilico C. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer. J Biol Chem. 2000 Jul 28;275(30):23387–23397. doi: 10.1074/jbc.M000932200. [DOI] [PubMed] [Google Scholar]
  3. Andres A. C., Strange R. Apoptosis in the estrous and menstrual cycles. J Mammary Gland Biol Neoplasia. 1999 Apr;4(2):221–228. doi: 10.1023/a:1018737510695. [DOI] [PubMed] [Google Scholar]
  4. Bar-Peled M., Raikhel N. V. A method for isolation and purification of specific antibodies to a protein fused to the GST. Anal Biochem. 1996 Oct 1;241(1):140–142. doi: 10.1006/abio.1996.0390. [DOI] [PubMed] [Google Scholar]
  5. Boncinelli E. Homeobox genes and disease. Curr Opin Genet Dev. 1997 Jun;7(3):331–337. doi: 10.1016/s0959-437x(97)80146-3. [DOI] [PubMed] [Google Scholar]
  6. Branch D. R., Guilbert L. J. Differential expression of tumor necrosis factor-alpha isoforms from lipopolysaccharide- and cytokine-stimulated mouse macrophages. Int J Biochem Cell Biol. 1996 Aug;28(8):949–955. doi: 10.1016/1357-2725(96)00061-1. [DOI] [PubMed] [Google Scholar]
  7. Branch D. R., Mills G. B. pp60c-src expression is induced by activation of normal human T lymphocytes. J Immunol. 1995 Apr 15;154(8):3678–3685. [PubMed] [Google Scholar]
  8. Budhram-Mahadeo V., Ndisang D., Ward T., Weber B. L., Latchman D. S. The Brn-3b POU family transcription factor represses expression of the BRCA-1 anti-oncogene in breast cancer cells. Oncogene. 1999 Nov 18;18(48):6684–6691. doi: 10.1038/sj.onc.1203072. [DOI] [PubMed] [Google Scholar]
  9. Caré A., Silvani A., Meccia E., Mattia G., Stoppacciaro A., Parmiani G., Peschle C., Colombo M. P. HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Mol Cell Biol. 1996 Sep;16(9):4842–4851. doi: 10.1128/mcb.16.9.4842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chariot A., Castronovo V. Detection of HOXA1 expression in human breast cancer. Biochem Biophys Res Commun. 1996 May 15;222(2):292–297. doi: 10.1006/bbrc.1996.0737. [DOI] [PubMed] [Google Scholar]
  11. Chariot A., Moreau L., Senterre G., Sobel M. E., Castronovo V. Retinoic acid induces three newly cloned HOXA1 transcripts in MCF7 breast cancer cells. Biochem Biophys Res Commun. 1995 Oct 13;215(2):713–720. doi: 10.1006/bbrc.1995.2522. [DOI] [PubMed] [Google Scholar]
  12. Chen F., Capecchi M. R. Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):541–546. doi: 10.1073/pnas.96.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cleary M. A., Herr W. Mechanisms for flexibility in DNA sequence recognition and VP16-induced complex formation by the Oct-1 POU domain. Mol Cell Biol. 1995 Apr;15(4):2090–2100. doi: 10.1128/mcb.15.4.2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dailey L., Yuan H., Basilico C. Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer. Mol Cell Biol. 1994 Dec;14(12):7758–7769. doi: 10.1128/mcb.14.12.7758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Friedmann Y., Daniel C. A., Strickland P., Daniel C. W. Hox genes in normal and neoplastic mouse mammary gland. Cancer Res. 1994 Nov 15;54(22):5981–5985. [PubMed] [Google Scholar]
  16. Friedmann Y., Daniel C. W. Regulated expression of homeobox genes Msx-1 and Msx-2 in mouse mammary gland development suggests a role in hormone action and epithelial-stromal interactions. Dev Biol. 1996 Jul 10;177(1):347–355. doi: 10.1006/dbio.1996.0168. [DOI] [PubMed] [Google Scholar]
  17. Jin T., Branch D. R., Zhang X., Qi S., Youngson B., Goss P. E. Examination of POU homeobox gene expression in human breast cancer cells. Int J Cancer. 1999 Mar 31;81(1):104–112. doi: 10.1002/(sici)1097-0215(19990331)81:1<104::aid-ijc18>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  18. Jin T., Drucker D. J. Activation of proglucagon gene transcription through a novel promoter element by the caudal-related homeodomain protein cdx-2/3. Mol Cell Biol. 1996 Jan;16(1):19–28. doi: 10.1128/mcb.16.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jin T., Li H. Pou homeodomain protein OCT1 is implicated in the expression of the caudal-related homeobox gene Cdx-2. J Biol Chem. 2001 Feb 6;276(18):14752–14758. doi: 10.1074/jbc.M008277200. [DOI] [PubMed] [Google Scholar]
  20. Kraft H. J., Mosselman S., Smits H. A., Hohenstein P., Piek E., Chen Q., Artzt K., van Zoelen E. J. Oct-4 regulates alternative platelet-derived growth factor alpha receptor gene promoter in human embryonal carcinoma cells. J Biol Chem. 1996 May 31;271(22):12873–12878. doi: 10.1074/jbc.271.22.12873. [DOI] [PubMed] [Google Scholar]
  21. Liu L., Roberts R. M. Silencing of the gene for the beta subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. J Biol Chem. 1996 Jul 12;271(28):16683–16689. doi: 10.1074/jbc.271.28.16683. [DOI] [PubMed] [Google Scholar]
  22. Ma Y. G., Rosfjord E., Huebert C., Wilder P., Tiesman J., Kelly D., Rizzino A. Transcriptional regulation of the murine k-FGF gene in embryonic cell lines. Dev Biol. 1992 Nov;154(1):45–54. doi: 10.1016/0012-1606(92)90046-j. [DOI] [PubMed] [Google Scholar]
  23. Okamoto K., Okazawa H., Okuda A., Sakai M., Muramatsu M., Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell. 1990 Feb 9;60(3):461–472. doi: 10.1016/0092-8674(90)90597-8. [DOI] [PubMed] [Google Scholar]
  24. Okazawa H., Okamoto K., Ishino F., Ishino-Kaneko T., Takeda S., Toyoda Y., Muramatsu M., Hamada H. The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. EMBO J. 1991 Oct;10(10):2997–3005. doi: 10.1002/j.1460-2075.1991.tb07850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Penault-Llorca F., Bertucci F., Adélaïde J., Parc P., Coulier F., Jacquemier J., Birnbaum D., deLapeyrière O. Expression of FGF and FGF receptor genes in human breast cancer. Int J Cancer. 1995 Apr 10;61(2):170–176. doi: 10.1002/ijc.2910610205. [DOI] [PubMed] [Google Scholar]
  26. Phippard D. J., Weber-Hall S. J., Sharpe P. T., Naylor M. S., Jayatalake H., Maas R., Woo I., Roberts-Clark D., Francis-West P. H., Liu Y. H. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development. 1996 Sep;122(9):2729–2737. doi: 10.1242/dev.122.9.2729. [DOI] [PubMed] [Google Scholar]
  27. Pikarsky E., Sharir H., Ben-Shushan E., Bergman Y. Retinoic acid represses Oct-3/4 gene expression through several retinoic acid-responsive elements located in the promoter-enhancer region. Mol Cell Biol. 1994 Feb;14(2):1026–1038. doi: 10.1128/mcb.14.2.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rice J. C., Massey-Brown K. S., Futscher B. W. Aberrant methylation of the BRCA1 CpG island promoter is associated with decreased BRCA1 mRNA in sporadic breast cancer cells. Oncogene. 1998 Oct 8;17(14):1807–1812. doi: 10.1038/sj.onc.1202086. [DOI] [PubMed] [Google Scholar]
  29. Rosner M. H., Vigano M. A., Ozato K., Timmons P. M., Poirier F., Rigby P. W., Staudt L. M. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature. 1990 Jun 21;345(6277):686–692. doi: 10.1038/345686a0. [DOI] [PubMed] [Google Scholar]
  30. Schöler H. R., Balling R., Hatzopoulos A. K., Suzuki N., Gruss P. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J. 1989 Sep;8(9):2551–2557. doi: 10.1002/j.1460-2075.1989.tb08393.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schöler H. R., Ruppert S., Suzuki N., Chowdhury K., Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature. 1990 Mar 29;344(6265):435–439. doi: 10.1038/344435a0. [DOI] [PubMed] [Google Scholar]
  32. Scott M. P. Vertebrate homeobox gene nomenclature. Cell. 1992 Nov 13;71(4):551–553. doi: 10.1016/0092-8674(92)90588-4. [DOI] [PubMed] [Google Scholar]
  33. Shimamoto T., Ohyashiki K., Toyama K., Takeshita K. Homeobox genes in hematopoiesis and leukemogenesis. Int J Hematol. 1998 Jun;67(4):339–350. doi: 10.1016/s0925-5710(98)00024-3. [DOI] [PubMed] [Google Scholar]
  34. Shimazaki T., Okazawa H., Fujii H., Ikeda M., Tamai K., McKay R. D., Muramatsu M., Hamada H. Hybrid cell extinction and re-expression of Oct-3 function correlates with differentiation potential. EMBO J. 1993 Dec;12(12):4489–4498. doi: 10.1002/j.1460-2075.1993.tb06138.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Souttou B., Gamby C., Crepin M., Hamelin R. Tumoral progression of human breast epithelial cells secreting FGF2 and FGF4. Int J Cancer. 1996 Nov 27;68(5):675–681. doi: 10.1002/(SICI)1097-0215(19961127)68:5<675::AID-IJC19>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  36. Srebrow A., Friedmann Y., Ravanpay A., Daniel C. W., Bissell M. J. Expression of Hoxa-1 and Hoxb-7 is regulated by extracellular matrix-dependent signals in mammary epithelial cells. J Cell Biochem. 1998 Jun 15;69(4):377–391. doi: 10.1002/(sici)1097-4644(19980615)69:4<377::aid-jcb1>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  37. Stuart E. T., Haffner R., Oren M., Gruss P. Loss of p53 function through PAX-mediated transcriptional repression. EMBO J. 1995 Nov 15;14(22):5638–5645. doi: 10.1002/j.1460-2075.1995.tb00251.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Takeda J., Seino S., Bell G. I. Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res. 1992 Sep 11;20(17):4613–4620. doi: 10.1093/nar/20.17.4613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang A., Schneider-Broussard R., Kumar A. P., MacLeod M. C., Johnson D. G. Regulation of BRCA1 expression by the Rb-E2F pathway. J Biol Chem. 2000 Feb 11;275(6):4532–4536. doi: 10.1074/jbc.275.6.4532. [DOI] [PubMed] [Google Scholar]
  40. Wang L., Schultz G. A. Expression of Oct-4 during differentiation of murine F9 cells. Biochem Cell Biol. 1996;74(4):579–584. doi: 10.1139/o96-062. [DOI] [PubMed] [Google Scholar]
  41. Yuan H., Corbi N., Basilico C., Dailey L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 1995 Nov 1;9(21):2635–2645. doi: 10.1101/gad.9.21.2635. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES