Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 1;375(Pt 1):87–97. doi: 10.1042/BJ20030376

Neuronal calcium sensor proteins are direct targets of the insulinotropic agent repaglinide.

Miki Okada 1, Daisuke Takezawa 1, Shuji Tachibanaki 1, Satoru Kawamura 1, Hiroshi Tokumitsu 1, Ryoji Kobayashi 1
PMCID: PMC1223665  PMID: 12844348

Abstract

The NCS (neuronal calcium sensor) proteins, including neurocalcins, recoverins and visinin-like proteins are members of a family of Ca2+-sensitive regulators, each with three Ca2+-binding EF-hand motifs. In plants, lily CCaMK [chimaeric Ca2+/CaM (calmodulin)-dependent protein kinase] and its PpCaMK ( Physcomitrella patens CCaMK) homologue are characterized by a visinin-like domain with three EF-hands. In the present study, in an effort to discover NCS antagonists, we screened a total of 43 compounds using Ca2+-dependent drug affinity chromatography and found that the insulinotropic agent repaglinide targets the NCS protein family. Repaglinide was found to bind to NCS proteins, but not to CaM or S100 proteins, in a Ca2+-dependent manner. Furthermore, the drug antagonized the inhibitory action of recoverin in a rhodopsin kinase assay with IC50 values of 400 microM. Moreover, repaglinide tightly bound to the visinin-like domain of CCaMK and PpCaMK in a Ca2+-dependent manner and antagonized the regulatory function of the domain with IC50 values of 55 and 4 microM for CCaMK and PpCaMK respectively. Although both repaglinide and a potent insulin secretagogue, namely glibenclamide, blocked K(ATP) channels with similar potency, glibenclamide had no antagonizing effect on the Ca2+-stimulated CCaMK and PpCaMK autophosphorylation, mediated by their visinin-like domain. In addition, a typical CaM antagonist, trifluoperazine, had no effect on the CCaMK and PpCaMK autophosphorylation. Repaglinide appears to be the first antagonist of NCS proteins and visinin-like domain-bearing enzymes. It may serve as a useful tool for evaluating the physiological functions of the NCS protein family. In addition, since repaglinide selectively targets NCS proteins among the EF-hand Ca2+-binding proteins, it is a potential lead compound for the development of more potent NCS antagonists.

Full Text

The Full Text of this article is available as a PDF (517.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An W. F., Bowlby M. R., Betty M., Cao J., Ling H. P., Mendoza G., Hinson J. W., Mattsson K. I., Strassle B. W., Trimmer J. S. Modulation of A-type potassium channels by a family of calcium sensors. Nature. 2000 Feb 3;403(6769):553–556. doi: 10.1038/35000592. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. K. Ca2+ and the regulation of neurotransmitter secretion. Curr Opin Neurobiol. 1997 Jun;7(3):316–322. doi: 10.1016/s0959-4388(97)80058-x. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Neuronal calcium signaling. Neuron. 1998 Jul;21(1):13–26. doi: 10.1016/s0896-6273(00)80510-3. [DOI] [PubMed] [Google Scholar]
  4. Braunewell K. H., Gundelfinger E. D. Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res. 1999 Jan;295(1):1–12. doi: 10.1007/s004410051207. [DOI] [PubMed] [Google Scholar]
  5. Braunewell K. H., Spilker C., Behnisch T., Gundelfinger E. D. The neuronal calcium-sensor protein VILIP modulates cyclic AMP accumulation in stably transfected C6 glioma cells: amino-terminal myristoylation determines functional activity. J Neurochem. 1997 May;68(5):2129–2139. doi: 10.1046/j.1471-4159.1997.68052129.x. [DOI] [PubMed] [Google Scholar]
  6. Burgoyne R. D., Weiss J. L. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J. 2001 Jan 1;353(Pt 1):1–12. [PMC free article] [PubMed] [Google Scholar]
  7. Buxbaum J. D., Choi E. K., Luo Y., Lilliehook C., Crowley A. C., Merriam D. E., Wasco W. Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat Med. 1998 Oct;4(10):1177–1181. doi: 10.1038/2673. [DOI] [PubMed] [Google Scholar]
  8. Carrión A. M., Link W. A., Ledo F., Mellström B., Naranjo J. R. DREAM is a Ca2+-regulated transcriptional repressor. Nature. 1999 Mar 4;398(6722):80–84. doi: 10.1038/18044. [DOI] [PubMed] [Google Scholar]
  9. Chen C. K., Inglese J., Lefkowitz R. J., Hurley J. B. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem. 1995 Jul 28;270(30):18060–18066. doi: 10.1074/jbc.270.30.18060. [DOI] [PubMed] [Google Scholar]
  10. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  11. Dabrowski M., Wahl P., Holmes W. E., Ashcroft F. M. Effect of repaglinide on cloned beta cell, cardiac and smooth muscle types of ATP-sensitive potassium channels. Diabetologia. 2001 Jun;44(6):747–756. doi: 10.1007/s001250051684. [DOI] [PubMed] [Google Scholar]
  12. Dizhoor A. M., Ray S., Kumar S., Niemi G., Spencer M., Brolley D., Walsh K. A., Philipov P. P., Hurley J. B., Stryer L. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science. 1991 Feb 22;251(4996):915–918. doi: 10.1126/science.1672047. [DOI] [PubMed] [Google Scholar]
  13. Endo T., Tanaka T., Isobe T., Kasai H., Okuyama T., Hidaka H. Calcium-dependent affinity chromatography of S-100 and calmodulin on calmodulin antagonist-coupled Sepharose. J Biol Chem. 1981 Dec 10;256(23):12485–12489. [PubMed] [Google Scholar]
  14. Hendricks K. B., Wang B. Q., Schnieders E. A., Thorner J. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol. 1999 Aug;1(4):234–241. doi: 10.1038/12058. [DOI] [PubMed] [Google Scholar]
  15. Hu S., Wang S., Fanelli B., Bell P. A., Dunning B. E., Geisse S., Schmitz R., Boettcher B. R. Pancreatic beta-cell K(ATP) channel activity and membrane-binding studies with nateglinide: A comparison with sulfonylureas and repaglinide. J Pharmacol Exp Ther. 2000 May;293(2):444–452. [PubMed] [Google Scholar]
  16. Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996 Jan;21(1):14–17. [PubMed] [Google Scholar]
  17. Kato M., Watanabe Y., Iino S., Takaoka Y., Kobayashi S., Haga T., Hidaka H. Cloning and expression of a cDNA encoding a new neurocalcin isoform (neurocalcin alpha) from bovine brain. Biochem J. 1998 May 1;331(Pt 3):871–876. doi: 10.1042/bj3310871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kawamura S., Hisatomi O., Kayada S., Tokunaga F., Kuo C. H. Recoverin has S-modulin activity in frog rods. J Biol Chem. 1993 Jul 15;268(20):14579–14582. [PubMed] [Google Scholar]
  19. Kawamura S., Murakami M. Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Nature. 1991 Jan 31;349(6308):420–423. doi: 10.1038/349420a0. [DOI] [PubMed] [Google Scholar]
  20. Ladant D. Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. J Biol Chem. 1995 Feb 17;270(7):3179–3185. [PubMed] [Google Scholar]
  21. Malaisse W. J. Stimulation of insulin release by non-sulfonylurea hypoglycemic agents: the meglitinide family. Horm Metab Res. 1995 Jun;27(6):263–266. doi: 10.1055/s-2007-979955. [DOI] [PubMed] [Google Scholar]
  22. Marshak D. R., Watterson D. M., Van Eldik L. J. Calcium-dependent interaction of S100b, troponin C, and calmodulin with an immobilized phenothiazine. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6793–6797. doi: 10.1073/pnas.78.11.6793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Patil S., Takezawa D., Poovaiah B. W. Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4897–4901. doi: 10.1073/pnas.92.11.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pongs O., Lindemeier J., Zhu X. R., Theil T., Engelkamp D., Krah-Jentgens I., Lambrecht H. G., Koch K. W., Schwemer J., Rivosecchi R. Frequenin--a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron. 1993 Jul;11(1):15–28. doi: 10.1016/0896-6273(93)90267-u. [DOI] [PubMed] [Google Scholar]
  25. Sathyanarayanan P. V., Cremo C. R., Poovaiah B. W. Plant chimeric Ca2+/Calmodulin-dependent protein kinase. Role of the neural visinin-like domain in regulating autophosphorylation and calmodulin affinity. J Biol Chem. 2000 Sep 29;275(39):30417–30422. doi: 10.1074/jbc.M000771200. [DOI] [PubMed] [Google Scholar]
  26. Sathyanarayanan P. V., Siems W. F., Jones J. P., Poovaiah B. W. Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependent protein kinase. J Biol Chem. 2001 Jun 8;276(35):32940–32947. doi: 10.1074/jbc.M009648200. [DOI] [PubMed] [Google Scholar]
  27. Skelton N. J., Kördel J., Akke M., Forsén S., Chazin W. J. Signal transduction versus buffering activity in Ca(2+)-binding proteins. Nat Struct Biol. 1994 Apr;1(4):239–245. doi: 10.1038/nsb0494-239. [DOI] [PubMed] [Google Scholar]
  28. Stone J. M., Walker J. C. Plant protein kinase families and signal transduction. Plant Physiol. 1995 Jun;108(2):451–457. doi: 10.1104/pp.108.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tachibanaki S., Nanda K., Sasaki K., Ozaki K., Kawamura S. Amino acid residues of S-modulin responsible for interaction with rhodopsin kinase. J Biol Chem. 2000 Feb 4;275(5):3313–3319. doi: 10.1074/jbc.275.5.3313. [DOI] [PubMed] [Google Scholar]
  30. Takezawa D., Ramachandiran S., Paranjape V., Poovaiah B. W. Dual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin. J Biol Chem. 1996 Apr 5;271(14):8126–8132. doi: 10.1074/jbc.271.14.8126. [DOI] [PubMed] [Google Scholar]
  31. Terasawa M., Nakano A., Kobayashi R., Hidaka H. Neurocalcin: a novel calcium-binding protein from bovine brain. J Biol Chem. 1992 Sep 25;267(27):19596–19599. [PubMed] [Google Scholar]
  32. Tokumitsu H., Chijiwa T., Hagiwara M., Mizutani A., Terasawa M., Hidaka H. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1990 Mar 15;265(8):4315–4320. [PubMed] [Google Scholar]
  33. Watanabe Y., Kobayashi R., Ishikawa T., Hidaka H. Isolation and characterization of a calcium-binding protein derived from mRNA termed p9Ka, pEL-98, 18A2, or 42A by the newly synthesized vasorelaxant W-66 affinity chromatography. Arch Biochem Biophys. 1992 Feb 1;292(2):563–569. doi: 10.1016/0003-9861(92)90031-q. [DOI] [PubMed] [Google Scholar]
  34. Weiss J. L., Archer D. A., Burgoyne R. D. Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem. 2000 Dec 22;275(51):40082–40087. doi: 10.1074/jbc.M008603200. [DOI] [PubMed] [Google Scholar]
  35. Zhang S. P., Prozialeck W. C., Weiss B. Differential inhibition of calcium-dependent and calmodulin-dependent enzymes by drug-calmodulin adducts. Mol Pharmacol. 1990 Nov;38(5):698–704. [PubMed] [Google Scholar]
  36. Zimmer M., Hofmann F. Calmodulin antagonists inhibit activity of myosin light-chain kinase independent of calmodulin. Eur J Biochem. 1984 Jul 16;142(2):393–397. doi: 10.1111/j.1432-1033.1984.tb08300.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES