Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 1;375(Pt 1):99–109. doi: 10.1042/BJ20030346

Thrombin inhibits Bim (Bcl-2-interacting mediator of cell death) expression and prevents serum-withdrawal-induced apoptosis via protease-activated receptor 1.

Claire J Chalmers 1, Kathryn Balmanno 1, Kathryn Hadfield 1, Rebecca Ley 1, Simon J Cook 1
PMCID: PMC1223666  PMID: 12844349

Abstract

To investigate the role of thrombin in regulating apoptosis, we have used CCl39 cells, a fibroblast cell line in which thrombin-induced cell proliferation has been extensively studied. Withdrawal of serum from CCl39 cells resulted in a rapid apoptotic response that was completely prevented by the inclusion of thrombin. The protective effect of thrombin was reversed by pertussis toxin, suggesting that cell-survival signalling pathways are activated via a G(i) or G(o) heterotrimeric GTPase. Serum-withdrawal-induced death required de novo gene expression and was preceded by the rapid de novo expression of the pro-apoptotic 'BH3-only' protein Bim (Bcl-2-interacting mediator of cell death). Thrombin strongly inhibited the up-regulation of both Bim protein and Bim mRNA. The ability of thrombin to repress Bim expression, and to protect cells from apoptosis, was reversed by U0126, a MEK1/2 [MAPK (mitogen-activated protein kinase) or ERK (extracellular-signal-regulated kinase) 1/2] inhibitor, or LY294002, a phosphoinositide 3'-kinase (PI3K) inhibitor, suggesting that both the Raf-->MEK-->ERK1/2 and PI3K pathways co-operate to repress Bim and promote cell survival. A PAR1p (protease-activated receptor 1 agonist peptide) was also able to protect cells from serum-withdrawal-induced apoptosis, suggesting that thrombin acts via PAR1 to prevent apoptosis.

Full Text

The Full Text of this article is available as a PDF (416.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballif B. A., Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ. 2001 Aug;12(8):397–408. [PubMed] [Google Scholar]
  2. Balmanno K., Cook S. J. Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene. 1999 May 20;18(20):3085–3097. doi: 10.1038/sj.onc.1202647. [DOI] [PubMed] [Google Scholar]
  3. Beltman J., Erickson J. R., Martin G. A., Lyons J. F., Cook S. J. C3 toxin activates the stress signaling pathways, JNK and p38, but antagonizes the activation of AP-1 in rat-1 cells. J Biol Chem. 1999 Feb 5;274(6):3772–3780. doi: 10.1074/jbc.274.6.3772. [DOI] [PubMed] [Google Scholar]
  4. Beltman J., McCormick F., Cook S. J. The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase. J Biol Chem. 1996 Oct 25;271(43):27018–27024. doi: 10.1074/jbc.271.43.27018. [DOI] [PubMed] [Google Scholar]
  5. Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999 Mar 19;96(6):857–868. doi: 10.1016/s0092-8674(00)80595-4. [DOI] [PubMed] [Google Scholar]
  6. Chambard J. C., Paris S., L'Allemain G., Pouysségur J. Two growth factor signalling pathways in fibroblasts distinguished by pertussis toxin. Nature. 1987 Apr 23;326(6115):800–803. doi: 10.1038/326800a0. [DOI] [PubMed] [Google Scholar]
  7. Chinni C., de Niese M. R., Tew D. J., Jenkins A. L., Bottomley S. P., Mackie E. J. Thrombin, a survival factor for cultured myoblasts. J Biol Chem. 1999 Apr 2;274(14):9169–9174. doi: 10.1074/jbc.274.14.9169. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Cook S. J., McCormick F. Kinetic and biochemical correlation between sustained p44ERK1 (44 kDa extracellular signal-regulated kinase 1) activation and lysophosphatidic acid-stimulated DNA synthesis in Rat-1 cells. Biochem J. 1996 Nov 15;320(Pt 1):237–245. doi: 10.1042/bj3200237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cory Suzanne, Adams Jerry M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002 Sep;2(9):647–656. doi: 10.1038/nrc883. [DOI] [PubMed] [Google Scholar]
  11. Coughlin S. R. Thrombin signalling and protease-activated receptors. Nature. 2000 Sep 14;407(6801):258–264. doi: 10.1038/35025229. [DOI] [PubMed] [Google Scholar]
  12. Datta S. R., Brunet A., Greenberg M. E. Cellular survival: a play in three Akts. Genes Dev. 1999 Nov 15;13(22):2905–2927. doi: 10.1101/gad.13.22.2905. [DOI] [PubMed] [Google Scholar]
  13. Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M. E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997 Oct 17;91(2):231–241. doi: 10.1016/s0092-8674(00)80405-5. [DOI] [PubMed] [Google Scholar]
  14. Dijkers P. F., Medema R. H., Lammers J. W., Koenderman L., Coffer P. J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol. 2000 Oct 5;10(19):1201–1204. doi: 10.1016/s0960-9822(00)00728-4. [DOI] [PubMed] [Google Scholar]
  15. Donovan F. M., Cunningham D. D. Signaling pathways involved in thrombin-induced cell protection. J Biol Chem. 1998 May 22;273(21):12746–12752. doi: 10.1074/jbc.273.21.12746. [DOI] [PubMed] [Google Scholar]
  16. Donovan F. M., Pike C. J., Cotman C. W., Cunningham D. D. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci. 1997 Jul 15;17(14):5316–5326. doi: 10.1523/JNEUROSCI.17-14-05316.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herrant Magali, Luciano Frédéric, Loubat Agnès, Auberger Patrick. The protective effect of phorbol esters on Fas-mediated apoptosis in T cells. Transcriptional and postranscriptional regulation. Oncogene. 2002 Jul 25;21(32):4957–4968. doi: 10.1038/sj.onc.1205689. [DOI] [PubMed] [Google Scholar]
  18. LaMorte V. J., Kennedy E. D., Collins L. R., Goldstein D., Harootunian A. T., Brown J. H., Feramisco J. R. A requirement for Ras protein function in thrombin-stimulated mitogenesis in astrocytoma cells. J Biol Chem. 1993 Sep 15;268(26):19411–19415. [PubMed] [Google Scholar]
  19. Lavoie J. N., L'Allemain G., Brunet A., Müller R., Pouysségur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem. 1996 Aug 23;271(34):20608–20616. doi: 10.1074/jbc.271.34.20608. [DOI] [PubMed] [Google Scholar]
  20. Ley Rebecca, Balmanno Kathryn, Hadfield Kathryn, Weston Claire, Cook Simon J. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem. 2003 Mar 19;278(21):18811–18816. doi: 10.1074/jbc.M301010200. [DOI] [PubMed] [Google Scholar]
  21. Majumdar M., Seasholtz T. M., Buckmaster C., Toksoz D., Brown J. H. A rho exchange factor mediates thrombin and Galpha(12)-induced cytoskeletal responses. J Biol Chem. 1999 Sep 17;274(38):26815–26821. doi: 10.1074/jbc.274.38.26815. [DOI] [PubMed] [Google Scholar]
  22. McNamara C. A., Sarembock I. J., Gimple L. W., Fenton J. W., 2nd, Coughlin S. R., Owens G. K. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest. 1993 Jan;91(1):94–98. doi: 10.1172/JCI116206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meloche S., Seuwen K., Pagès G., Pouysségur J. Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity. Mol Endocrinol. 1992 May;6(5):845–854. doi: 10.1210/mend.6.5.1603090. [DOI] [PubMed] [Google Scholar]
  24. Nakano K., Vousden K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001 Mar;7(3):683–694. doi: 10.1016/s1097-2765(01)00214-3. [DOI] [PubMed] [Google Scholar]
  25. Paris S., Pouysségur J. Pertussis toxin inhibits thrombin-induced activation of phosphoinositide hydrolysis and Na+/H+ exchange in hamster fibroblasts. EMBO J. 1986 Jan;5(1):55–60. doi: 10.1002/j.1460-2075.1986.tb04177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Patterson C., Stouffer G. A., Madamanchi N., Runge M. S. New tricks for old dogs: nonthrombotic effects of thrombin in vessel wall biology. Circ Res. 2001 May 25;88(10):987–997. doi: 10.1161/hh1001.091447. [DOI] [PubMed] [Google Scholar]
  27. Phillips-Mason P. J., Raben D. M., Baldassare J. J. Phosphatidylinositol 3-kinase activity regulates alpha -thrombin-stimulated G1 progression by its effect on cyclin D1 expression and cyclin-dependent kinase 4 activity. J Biol Chem. 2000 Jun 16;275(24):18046–18053. doi: 10.1074/jbc.M909194199. [DOI] [PubMed] [Google Scholar]
  28. Putcha G. V., Moulder K. L., Golden J. P., Bouillet P., Adams J. A., Strasser A., Johnson E. M. Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron. 2001 Mar;29(3):615–628. doi: 10.1016/s0896-6273(01)00238-0. [DOI] [PubMed] [Google Scholar]
  29. Puthalakath H., Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 2002 May;9(5):505–512. doi: 10.1038/sj.cdd.4400998. [DOI] [PubMed] [Google Scholar]
  30. Rasmussen U. B., Vouret-Craviari V., Jallat S., Schlesinger Y., Pagès G., Pavirani A., Lecocq J. P., Pouysségur J., Van Obberghen-Schilling E. cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett. 1991 Aug 19;288(1-2):123–128. doi: 10.1016/0014-5793(91)81017-3. [DOI] [PubMed] [Google Scholar]
  31. Reimann-Philipp U., Ovase R., Weigel P. H., Grammas P. Mechanisms of cell death in primary cortical neurons and PC12 cells. J Neurosci Res. 2001 Jun 15;64(6):654–660. doi: 10.1002/jnr.1119. [DOI] [PubMed] [Google Scholar]
  32. Ritchie H., Fragoyannis A. Thrombin inhibits apoptosis of monocytes and plasminogen activator inhibitor 2 (PAI-2) is not responsible for this inhibition. Exp Cell Res. 2000 Oct 10;260(1):20–29. doi: 10.1006/excr.2000.4957. [DOI] [PubMed] [Google Scholar]
  33. Seuwen K., Kahan C., Hartmann T., Pouyssegur J. Strong and persistent activation of inositol lipid breakdown induces early mitogenic events but not Go to S phase progression in hamster fibroblasts. Comparison of thrombin and carbachol action in cells expressing M1 muscarinic acetylcholine receptors. J Biol Chem. 1990 Dec 25;265(36):22292–22299. [PubMed] [Google Scholar]
  34. Shimamura A., Ballif B. A., Richards S. A., Blenis J. Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr Biol. 2000 Feb 10;10(3):127–135. doi: 10.1016/s0960-9822(00)00310-9. [DOI] [PubMed] [Google Scholar]
  35. Smirnova I. V., Zhang S. X., Citron B. A., Arnold P. M., Festoff B. W. Thrombin is an extracellular signal that activates intracellular death protease pathways inducing apoptosis in model motor neurons. J Neurobiol. 1998 Jul;36(1):64–80. [PubMed] [Google Scholar]
  36. Turgeon V. L., Lloyd E. D., Wang S., Festoff B. W., Houenou L. J. Thrombin perturbs neurite outgrowth and induces apoptotic cell death in enriched chick spinal motoneuron cultures through caspase activation. J Neurosci. 1998 Sep 1;18(17):6882–6891. doi: 10.1523/JNEUROSCI.18-17-06882.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vaughan P. J., Pike C. J., Cotman C. W., Cunningham D. D. Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci. 1995 Jul;15(7 Pt 2):5389–5401. doi: 10.1523/JNEUROSCI.15-07-05389.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vouret-Craviari V., Van Obberghen-Schilling E., Rasmussen U. B., Pavirani A., Lecocq J. P., Pouysségur J. Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unable to induce mitogenesis. Mol Biol Cell. 1992 Jan;3(1):95–102. doi: 10.1091/mbc.3.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vouret-Craviari V., Van Obberghen-Schilling E., Scimeca J. C., Van Obberghen E., Pouysségur J. Differential activation of p44mapk (ERK1) by alpha-thrombin and thrombin-receptor peptide agonist. Biochem J. 1993 Jan 1;289(Pt 1):209–214. doi: 10.1042/bj2890209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  41. Weston Claire R., Balmanno Kathryn, Chalmers Claire, Hadfield Kathryn, Molton Sarah A., Ley Rebecca, Wagner Erwin F., Cook Simon J. Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene. 2003 Mar 6;22(9):1281–1293. doi: 10.1038/sj.onc.1206261. [DOI] [PubMed] [Google Scholar]
  42. Whitfield J., Neame S. J., Paquet L., Bernard O., Ham J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron. 2001 Mar;29(3):629–643. doi: 10.1016/s0896-6273(01)00239-2. [DOI] [PubMed] [Google Scholar]
  43. Zha J., Harada H., Yang E., Jockel J., Korsmeyer S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) Cell. 1996 Nov 15;87(4):619–628. doi: 10.1016/s0092-8674(00)81382-3. [DOI] [PubMed] [Google Scholar]
  44. van Corven E. J., Hordijk P. L., Medema R. H., Bos J. L., Moolenaar W. H. Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1257–1261. doi: 10.1073/pnas.90.4.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES