Abstract
Detyrosination/tyrosination of tubulin is a post-translational modification that occurs at the C-terminus of the alpha-subunit, giving rise to microtubules rich in either tyrosinated or detyrosinated tubulin which coexist in the cell. We hereby report that the tyrosine analogue, azatyrosine, can be incorporated into the C-terminus of alpha-tubulin instead of tyrosine. Azatyrosine is structurally identical to tyrosine except that a nitrogen atom replaces carbon-2 of the phenolic group. Azatyrosine competitively excluded incorporation of [14C]tyrosine into tubulin of soluble brain extract. A newly developed rabbit antibody specific to C-terminal azatyrosine was used to study incorporation of azatyrosine in cultured cells. When added to the culture medium (Ham's F12K), azatyrosine was incorporated into tubulin of glioma-derived C6 cells. This incorporation was reversible, i.e. after withdrawal of azatyrosine, tubulin lost azatyrosine and reincorporated tyrosine. Azatyrosinated tubulin self-assembled into microtubules to a similar degree as total tubulin both in vitro and in vivo. Studies by other groups have shown that treatment of certain types of cultured cancer cells with azatyrosine leads to reversion of phenotype to normal, and that administration of azatyrosine into animals harbouring human proto-oncogenic c-Ha- ras prevents tumour formation. These interesting observations led us to study this phenomenon in relation to tubulin status. Under conditions in which tubulin was mostly azatyrosinated, C6 cells remained viable but did not proliferate. After 7-10 days under these conditions, morphology changed from a fused, elongated shape to a rounded soma with thin processes. Incorporation of azatyrosine into the C-terminus of alpha-tubulin is proposed as one possible cause of reversion of the malignant phenotype.
Full Text
The Full Text of this article is available as a PDF (323.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arce C. A., Barra H. S. Association of tubulinyl-tyrosine carboxypeptidase with microtubules. FEBS Lett. 1983 Jun 27;157(1):75–78. doi: 10.1016/0014-5793(83)81119-3. [DOI] [PubMed] [Google Scholar]
- Arce C. A., Barra H. S. Release of C-terminal tyrosine from tubulin and microtubules at steady state. Biochem J. 1985 Feb 15;226(1):311–317. doi: 10.1042/bj2260311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arce C. A., Hallak M. E., Rodriguez J. A., Barra H. S., Caputto R. Capability of tubulin and microtubules to incorporate and to release tyrosine and phenylalanine and the effect of the incorporation of these amino acids on tubulin assembly. J Neurochem. 1978 Jul;31(1):205–210. doi: 10.1111/j.1471-4159.1978.tb12449.x. [DOI] [PubMed] [Google Scholar]
- Arce C. A., Rodriguez J. A., Barra H. S., Caputo R. Incorporation of L-tyrosine, L-phenylalanine and L-3,4-dihydroxyphenylalanine as single units into rat brain tubulin. Eur J Biochem. 1975 Nov 1;59(1):145–149. doi: 10.1111/j.1432-1033.1975.tb02435.x. [DOI] [PubMed] [Google Scholar]
- Argaraña C. E., Barra H. S., Caputto R. Release of [14C]tyrosine from tubulinyl-[14C]tyrosine by brain extract. Separation of a carboxypeptidase from tubulin-tyrosine ligase. Mol Cell Biochem. 1978 Feb 24;19(1):17–21. doi: 10.1007/BF00231230. [DOI] [PubMed] [Google Scholar]
- Barra H. S., Arcce C. A., Rodriguez J. A., Caputto R. Uncorporation of phenylalanine as a single unit into rat brain protein: reciprocal inhibition by phenylalanine and tyrosine of their respective incorporations. J Neurochem. 1973 Nov;21(5):1241–1251. doi: 10.1111/j.1471-4159.1973.tb07578.x. [DOI] [PubMed] [Google Scholar]
- Barra H. S., Arce C. A., Argaraña C. E. Posttranslational tyrosination/detyrosination of tubulin. Mol Neurobiol. 1988 Summer;2(2):133–153. doi: 10.1007/BF02935343. [DOI] [PubMed] [Google Scholar]
- Barra H. S., Arce C. A., Caputto R. Total tubulin and its aminoacylated and non-aminoacylated forms during the development of rat brain. Eur J Biochem. 1980 Aug;109(2):439–446. doi: 10.1111/j.1432-1033.1980.tb04813.x. [DOI] [PubMed] [Google Scholar]
- Barra H. S., Arce C. A., Rodríguez J. A., Caputto R. Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1384–1390. doi: 10.1016/0006-291x(74)90351-9. [DOI] [PubMed] [Google Scholar]
- Barra H. S., Rodriguez J. A., Arce C. A., Caputto R. A soluble preparation from rat brain that incorporates into its own proteins ( 14 C)arginine by a ribonuclease-sensitive system and ( 14 C)tyrosine by a ribonuclease-insensitive system. J Neurochem. 1973 Jan;20(1):97–108. doi: 10.1111/j.1471-4159.1973.tb12108.x. [DOI] [PubMed] [Google Scholar]
- Bisig C. Gastón, Purro Silvia A., Contín María A., Barra Héctor S., Arce Carlos A. Incorporation of 3-nitrotyrosine into the C-terminus of alpha-tubulin is reversible and not detrimental to dividing cells. Eur J Biochem. 2002 Oct;269(20):5037–5045. doi: 10.1046/j.1432-1033.2002.03220.x. [DOI] [PubMed] [Google Scholar]
- Chang Winston, Webster Daniel R., Salam Ambar A., Gruber Dorota, Prasad Aparna, Eiserich Jason P., Bulinski J. Chloë. Alteration of the C-terminal amino acid of tubulin specifically inhibits myogenic differentiation. J Biol Chem. 2002 Jun 17;277(34):30690–30698. doi: 10.1074/jbc.M204930200. [DOI] [PubMed] [Google Scholar]
- Chung D. L., Brandt-Rauf P. W., Weinstein I. B., Nishimura S., Yamaizumi Z., Murphy R. B., Pincus M. R. Evidence that the ras oncogene-encoded p21 protein induces oocyte maturation via activation of protein kinase C. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1993–1996. doi: 10.1073/pnas.89.5.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Contin M. A., Sironi J. J., Barra H. S., Arce C. A. Association of tubulin carboxypeptidase with microtubules in living cells. Biochem J. 1999 Apr 15;339(Pt 2):463–471. [PMC free article] [PubMed] [Google Scholar]
- Cook T. A., Nagasaki T., Gundersen G. G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol. 1998 Apr 6;141(1):175–185. doi: 10.1083/jcb.141.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eiserich J. P., Estévez A. G., Bamberg T. V., Ye Y. Z., Chumley P. H., Beckman J. S., Freeman B. A. Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6365–6370. doi: 10.1073/pnas.96.11.6365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ersfeld K., Wehland J., Plessmann U., Dodemont H., Gerke V., Weber K. Characterization of the tubulin-tyrosine ligase. J Cell Biol. 1993 Feb;120(3):725–732. doi: 10.1083/jcb.120.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujita-Yoshigaki J., Yokoyama S., Shindo-Okada N., Nishimura S. Azatyrosine inhibits neurite outgrowth of PC12 cells induced by oncogenic Ras. Oncogene. 1992 Oct;7(10):2019–2024. [PubMed] [Google Scholar]
- Gundersen G. G., Kalnoski M. H., Bulinski J. C. Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell. 1984 Oct;38(3):779–789. doi: 10.1016/0092-8674(84)90273-3. [DOI] [PubMed] [Google Scholar]
- Gundersen G. G., Khawaja S., Bulinski J. C. Postpolymerization detyrosination of alpha-tubulin: a mechanism for subcellular differentiation of microtubules. J Cell Biol. 1987 Jul;105(1):251–264. doi: 10.1083/jcb.105.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamano-Takaku F., Iwama T., Saito-Yano S., Takaku K., Monden Y., Kitabatake M., Soll D., Nishimura S. A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. 2000 Dec 22;275(51):40324–40328. doi: 10.1074/jbc.M003696200. [DOI] [PubMed] [Google Scholar]
- Inouye S., Shomura T., Tsuruoka T., Ogawa Y., Watanabe H. L-beta-(5-hydroxy-2-pyridyl)-alanine and L-beta-(3-hydroxyureido)-alanine from Streptomyces. Chem Pharm Bull (Tokyo) 1975 Nov;23(11):2669–2677. doi: 10.1248/cpb.23.2669. [DOI] [PubMed] [Google Scholar]
- Izawa M., Takayama S., Shindo-Okada N., Doi S., Kimura M., Katsuki M., Nishimura S. Inhibition of chemical carcinogenesis in vivo by azatyrosine. Cancer Res. 1992 Mar 15;52(6):1628–1630. [PubMed] [Google Scholar]
- Joniau M., Coudijzer K., De Cuyper M. Reaction of alpha-tubulin with iodotyrosines catalyzed by tubulin:tyrosine ligase: carboxy-terminal labeling of tubulin with [125I]monoiodotyrosine. Anal Biochem. 1990 Feb 1;184(2):325–329. doi: 10.1016/0003-2697(90)90689-7. [DOI] [PubMed] [Google Scholar]
- Krzyzosiak W. J., Shindo-Okada N., Teshima H., Nakajima K., Nishimura S. Isolation of genes specifically expressed in flat revertant cells derived from activated ras-transformed NIH 3T3 cells by treatment with azatyrosine. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4879–4883. doi: 10.1073/pnas.89.11.4879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lafanechère L., Courtay-Cahen C., Kawakami T., Jacrot M., Rüdiger M., Wehland J., Job D., Margolis R. L. Suppression of tubulin tyrosine ligase during tumor growth. J Cell Sci. 1998 Jan;111(Pt 2):171–181. doi: 10.1242/jcs.111.2.171. [DOI] [PubMed] [Google Scholar]
- MacRae T. H. Tubulin post-translational modifications--enzymes and their mechanisms of action. Eur J Biochem. 1997 Mar 1;244(2):265–278. doi: 10.1111/j.1432-1033.1997.00265.x. [DOI] [PubMed] [Google Scholar]
- Mialhe A., Lafanechère L., Treilleux I., Peloux N., Dumontet C., Brémond A., Panh M. H., Payan R., Wehland J., Margolis R. L. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 2001 Jul 1;61(13):5024–5027. [PubMed] [Google Scholar]
- Miura Y., Kikuchi A., Musha T., Kuroda S., Yaku H., Sasaki T., Takai Y. Regulation of morphology by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in Swiss 3T3 cells. J Biol Chem. 1993 Jan 5;268(1):510–515. [PubMed] [Google Scholar]
- Monasterio O., Nova E., López-Brauet A., Lagos R. Tubulin-tyrosine ligase catalyzes covalent binding of 3-fluoro-tyrosine to tubulin: kinetic and [19F]NMR studies. FEBS Lett. 1995 Oct 30;374(2):165–168. doi: 10.1016/0014-5793(95)01099-z. [DOI] [PubMed] [Google Scholar]
- Monden Y., Hamano Takaku F., Shindo Okada N., Nishimura S. Azatyrosine. Mechanism of action for conversion of transformed phenotype to normal. Ann N Y Acad Sci. 1999;886:109–121. doi: 10.1111/j.1749-6632.1999.tb09406.x. [DOI] [PubMed] [Google Scholar]
- Murofushi H. Purification and characterization of tubulin-tyrosine ligase from porcine brain. J Biochem. 1980 Mar;87(3):979–984. doi: 10.1093/oxfordjournals.jbchem.a132828. [DOI] [PubMed] [Google Scholar]
- Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
- Rodriguez J. A., Barra H. S., Arce C. A., Hallak M. E., Caputto R. The reciprocal exclusion by L-dopa (L-3,4-dihydroxyphenylalanine) and L-tyrosine of their incorporation as single units into a soluble rat brain protein. Biochem J. 1975 Jul;149(1):115–121. doi: 10.1042/bj1490115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schröder H. C., Wehland J., Weber K. Purification of brain tubulin-tyrosine ligase by biochemical and immunological methods. J Cell Biol. 1985 Jan;100(1):276–281. doi: 10.1083/jcb.100.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shindo-Okada N., Makabe O., Nagahara H., Nishimura S. Permanent conversion of mouse and human cells transformed by activated ras or raf genes to apparently normal cells by treatment with the antibiotic azatyrosine. Mol Carcinog. 1989;2(3):159–167. doi: 10.1002/mc.2940020309. [DOI] [PubMed] [Google Scholar]
- Sironi J. J., Barra H. S., Arce C. A. The association of tubulin carboxypeptidase activity with microtubules in brain extracts is modulated by phosphorylation/dephosphorylation processes. Mol Cell Biochem. 1997 May;170(1-2):9–16. doi: 10.1023/a:1006846828547. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vée S., Lafanechère L., Fisher D., Wehland J., Job D., Picard A. Evidence for a role of the (alpha)-tubulin C terminus in the regulation of cyclin B synthesis in developing oocytes. J Cell Sci. 2001 Mar;114(Pt 5):887–898. doi: 10.1242/jcs.114.5.887. [DOI] [PubMed] [Google Scholar]
- Wehland J., Schröder H. C., Weber K. Isolation and purification of tubulin tyrosine ligase. Methods Enzymol. 1986;134:170–179. doi: 10.1016/0076-6879(86)34086-2. [DOI] [PubMed] [Google Scholar]
