Abstract
Hypochlorous acid (HOCl) is a potent oxidant produced by myeloperoxidase that causes aggregation of many proteins. Treatment of apohaemoglobin and apomyoglobin with HOCl produced a regular series of oligomer bands when the proteins were separated by SDS/PAGE under reducing conditions. Aggregation was detectable at a HOCl/protein molar ratio of 0.5:1 and was maximal at ratios of 10:1-20:1. Dimers formed within 1 min of adding HOCl, and further aggregation occurred over the next 30 min. No convincing evidence for covalent cross-linking was obtained by amino acid analysis, peptide analysis or electrospray ionization-MS of HOCl-modified apomyoglobin. The latter showed an increase in mass consistent with conversion of the two methionine residues into sulphoxides. A 5-fold excess of HOCl generated approximately three chloramines on the apomyoglobin. These underwent slow decay. Protein carbonyls were formed and were almost entirely located only on the polymer bands. Conversion of positively into negatively charged groups on the protein by succinylation caused preformed aggregates to dissociate. Treatment of apomyoglobin with taurine chloramine generated methionine sulphoxides but few protein carbonyls, and did not result in aggregation. We conclude that aggregation was due to strong, non-covalent interactions between protein chains. We propose that formation of protein carbonyls and possibly chloramines, along with methionine oxidation, alters protein folding to expose hydrophobic areas on neighbouring molecules that associate to form dimers and higher-molecular-mass aggregates. This process could lead to the formation of aggregated proteins at sites of myeloperoxidase activity and contribute to inflammatory tissue injury.
Full Text
The Full Text of this article is available as a PDF (175.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auchère Françoise, Capeillère-Blandin Chantal. Oxidation of Cu, Zn-superoxide dismutase by the myeloperoxidase/hydrogen peroxide/chloride system: functional and structural effects. Free Radic Res. 2002 Nov;36(11):1185–1198. doi: 10.1080/1071576021000016454. [DOI] [PubMed] [Google Scholar]
- Bergt C., Marsche G., Panzenboeck U., Heinecke J. W., Malle E., Sattler W. Human neutrophils employ the myeloperoxidase/hydrogen peroxide/chloride system to oxidatively damage apolipoprotein A-I. Eur J Biochem. 2001 Jun;268(12):3523–3531. doi: 10.1046/j.1432-1327.2001.02253.x. [DOI] [PubMed] [Google Scholar]
- Bergt C., Oettl K., Keller W., Andreae F., Leis H. J., Malle E., Sattler W. Reagent or myeloperoxidase-generated hypochlorite affects discrete regions in lipid-free and lipid-associated human apolipoprotein A-I. Biochem J. 2000 Mar 1;346(Pt 2):345–354. [PMC free article] [PubMed] [Google Scholar]
- Brennan S. O. Electrospray ionisation analysis of human fibrinogen. Thromb Haemost. 1997 Sep;78(3):1055–1058. [PubMed] [Google Scholar]
- Buss H., Chan T. P., Sluis K. B., Domigan N. M., Winterbourn C. C. Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med. 1997;23(3):361–366. doi: 10.1016/s0891-5849(97)00104-4. [DOI] [PubMed] [Google Scholar]
- Chao C. C., Ma Y. S., Stadtman E. R. Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2969–2974. doi: 10.1073/pnas.94.7.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalle-Donne I., Rossi R., Giustarini D., Gagliano N., Di Simplicio P., Colombo R., Milzani A. Methionine oxidation as a major cause of the functional impairment of oxidized actin. Free Radic Biol Med. 2002 May 1;32(9):927–937. doi: 10.1016/s0891-5849(02)00799-2. [DOI] [PubMed] [Google Scholar]
- Davies K. J., Delsignore M. E. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J Biol Chem. 1987 Jul 15;262(20):9908–9913. [PubMed] [Google Scholar]
- DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P., Vonsattel J. P., Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997 Sep 26;277(5334):1990–1993. doi: 10.1126/science.277.5334.1990. [DOI] [PubMed] [Google Scholar]
- Diedrich D. L., Schnaitman C. A. Lysyl-derived aldehydes in outer membrane proteins of Escherichia coli. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3708–3712. doi: 10.1073/pnas.75.8.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FANELLI A. R., ANTONINI E., CAPUTO A. Studies on the structure of hemoglobin. I. Physicochemical properties of human globin. Biochim Biophys Acta. 1958 Dec;30(3):608–615. doi: 10.1016/0006-3002(58)90108-2. [DOI] [PubMed] [Google Scholar]
- Friguet B., Stadtman E. R., Szweda L. I. Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J Biol Chem. 1994 Aug 26;269(34):21639–21643. [PubMed] [Google Scholar]
- Fu Xiaoyun, Mueller Dianne M., Heinecke Jay W. Generation of intramolecular and intermolecular sulfenamides, sulfinamides, and sulfonamides by hypochlorous acid: a potential pathway for oxidative cross-linking of low-density lipoprotein by myeloperoxidase. Biochemistry. 2002 Jan 29;41(4):1293–1301. doi: 10.1021/bi015777z. [DOI] [PubMed] [Google Scholar]
- Giulivi C., Pacifici R. E., Davies K. J. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome. Arch Biochem Biophys. 1994 Jun;311(2):329–341. doi: 10.1006/abbi.1994.1245. [DOI] [PubMed] [Google Scholar]
- Grune T., Reinheckel T., Davies K. J. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997 Jun;11(7):526–534. [PubMed] [Google Scholar]
- Handelman G. J., Nightingale Z. D., Dolnikowski G. G., Blumberg J. B. Formation of carbonyls during attack on insulin by submolar amounts of hypochlorite. Anal Biochem. 1998 May 1;258(2):339–348. doi: 10.1006/abio.1998.2592. [DOI] [PubMed] [Google Scholar]
- Hawkins C. L., Davies M. J. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation. Biochem J. 1998 Jun 15;332(Pt 3):617–625. doi: 10.1042/bj3320617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazell L. J., Stocker R. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem J. 1993 Feb 15;290(Pt 1):165–172. doi: 10.1042/bj2900165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazell L. J., van den Berg J. J., Stocker R. Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J. 1994 Aug 15;302(Pt 1):297–304. doi: 10.1042/bj3020297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hazen S. L., d'Avignon A., Anderson M. M., Hsu F. F., Heinecke J. W. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidize alpha-amino acids to a family of reactive aldehydes. Mechanistic studies identifying labile intermediates along the reaction pathway. J Biol Chem. 1998 Feb 27;273(9):4997–5005. doi: 10.1074/jbc.273.9.4997. [DOI] [PubMed] [Google Scholar]
- Horwich Arthur. Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions. J Clin Invest. 2002 Nov;110(9):1221–1232. doi: 10.1172/JCI16781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarrett H. W., Cooksy K. D., Ellis B., Anderson J. M. The separation of o-phthalaldehyde derivatives of amino acids by reversed-phase chromatography on octylsilica columns. Anal Biochem. 1986 Feb 15;153(1):189–198. doi: 10.1016/0003-2697(86)90079-5. [DOI] [PubMed] [Google Scholar]
- Jasin H. E. Oxidative cross-linking of immune complexes by human polymorphonuclear leukocytes. J Clin Invest. 1988 Jan;81(1):6–15. doi: 10.1172/JCI113310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kettle A. J., Winterbourn C. C. Assays for the chlorination activity of myeloperoxidase. Methods Enzymol. 1994;233:502–512. doi: 10.1016/s0076-6879(94)33056-5. [DOI] [PubMed] [Google Scholar]
- Koo E. H., Lansbury P. T., Jr, Kelly J. W. Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):9989–9990. doi: 10.1073/pnas.96.18.9989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee C., Levin A., Branton D. Copper staining: a five-minute protein stain for sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1987 Nov 1;166(2):308–312. doi: 10.1016/0003-2697(87)90579-3. [DOI] [PubMed] [Google Scholar]
- Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-h. [DOI] [PubMed] [Google Scholar]
- Levine R. L., Williams J. A., Stadtman E. R., Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–357. doi: 10.1016/s0076-6879(94)33040-9. [DOI] [PubMed] [Google Scholar]
- Lomas David A., Carrell Robin W. Serpinopathies and the conformational dementias. Nat Rev Genet. 2002 Oct;3(10):759–768. doi: 10.1038/nrg907. [DOI] [PubMed] [Google Scholar]
- MacMillan-Crow L. A., Crow J. P., Thompson J. A. Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry. 1998 Feb 10;37(6):1613–1622. doi: 10.1021/bi971894b. [DOI] [PubMed] [Google Scholar]
- Maida V., Bennardini F., Bonomi F., Ganadu M. L., Iametti S., Mura G. M. Dissociation of human alphaB-crystallin aggregates by thiocyanate is structurally and functionally reversible. J Protein Chem. 2000 May;19(4):311–318. doi: 10.1023/a:1007051514282. [DOI] [PubMed] [Google Scholar]
- Marsche Gunther, Hammer Astrid, Oskolkova Olga, Kozarsky Karen F., Sattler Wolfgang, Malle Ernst. Hypochlorite-modified high density lipoprotein, a high affinity ligand to scavenger receptor class B, type I, impairs high density lipoprotein-dependent selective lipid uptake and reverse cholesterol transport. J Biol Chem. 2002 Jun 17;277(35):32172–32179. doi: 10.1074/jbc.M200503200. [DOI] [PubMed] [Google Scholar]
- O'Connell A. M., Gieseg S. P., Stanley K. K. Hypochlorite oxidation causes cross-linking of Lp(a). Biochim Biophys Acta. 1994 Jan 11;1225(2):180–186. doi: 10.1016/0925-4439(94)90076-0. [DOI] [PubMed] [Google Scholar]
- Olszowski S., Olszowska E., Stelmaszyńska T., Krawczyk A., Marcinkiewicz J., Baczek N. Oxidative modification of ovalbumin. Acta Biochim Pol. 1996;43(4):661–672. [PubMed] [Google Scholar]
- Pattison D. I., Davies M. J. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. Chem Res Toxicol. 2001 Oct;14(10):1453–1464. doi: 10.1021/tx0155451. [DOI] [PubMed] [Google Scholar]
- Peskin A. V., Winterbourn C. C. Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med. 2001 Mar 1;30(5):572–579. doi: 10.1016/s0891-5849(00)00506-2. [DOI] [PubMed] [Google Scholar]
- Pichorner H., Metodiewa D., Winterbourn C. C. Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione. Arch Biochem Biophys. 1995 Nov 10;323(2):429–437. doi: 10.1006/abbi.1995.0064. [DOI] [PubMed] [Google Scholar]
- Podrez E. A., Abu-Soud H. M., Hazen S. L. Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med. 2000 Jun 15;28(12):1717–1725. doi: 10.1016/s0891-5849(00)00229-x. [DOI] [PubMed] [Google Scholar]
- Pussinen Pirkko J., Metso Jari, Keva Ritva, Hirschmugl Birgit, Sattler Wolfgang, Jauhiainen Matti, Malle Ernst. Plasma phospholipid transfer protein-mediated reactions are impaired by hypochlorite-modification of high density lipoprotein. Int J Biochem Cell Biol. 2003 Feb;35(2):192–202. doi: 10.1016/s1357-2725(02)00130-9. [DOI] [PubMed] [Google Scholar]
- Qin J., Fenyö D., Zhao Y., Hall W. W., Chao D. M., Wilson C. J., Young R. A., Chait B. T. A strategy for rapid, high-confidence protein identification. Anal Chem. 1997 Oct 1;69(19):3995–4001. doi: 10.1021/ac970488v. [DOI] [PubMed] [Google Scholar]
- Raftery M. J., Yang Z., Valenzuela S. M., Geczy C. L. Novel intra- and inter-molecular sulfinamide bonds in S100A8 produced by hypochlorite oxidation. J Biol Chem. 2001 Jul 9;276(36):33393–33401. doi: 10.1074/jbc.M101566200. [DOI] [PubMed] [Google Scholar]
- Sagné C., Isambert M. F., Henry J. P., Gasnier B. SDS-resistant aggregation of membrane proteins: application to the purification of the vesicular monoamine transporter. Biochem J. 1996 Jun 15;316(Pt 3):825–831. doi: 10.1042/bj3160825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stadtman E. R., Berlett B. S. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol. 1997 May;10(5):485–494. doi: 10.1021/tx960133r. [DOI] [PubMed] [Google Scholar]
- Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
- Ullrich O., Reinheckel T., Sitte N., Grune T. Degradation of hypochlorite-damaged glucose-6-phosphate dehydrogenase by the 20S proteasome. Free Radic Biol Med. 1999 Sep;27(5-6):487–492. doi: 10.1016/s0891-5849(99)00060-x. [DOI] [PubMed] [Google Scholar]
- Vissers M. C., Carr A. C., Chapman A. L. Comparison of human red cell lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis. Biochem J. 1998 Feb 15;330(Pt 1):131–138. doi: 10.1042/bj3300131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vissers M. C., Winterbourn C. C. Oxidative damage to fibronectin. I. The effects of the neutrophil myeloperoxidase system and HOCl. Arch Biochem Biophys. 1991 Feb 15;285(1):53–59. doi: 10.1016/0003-9861(91)90327-f. [DOI] [PubMed] [Google Scholar]
- Winterbourn C. C. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta. 1985 Jun 18;840(2):204–210. doi: 10.1016/0304-4165(85)90120-5. [DOI] [PubMed] [Google Scholar]
- Wu S. M., Pizzo S. V. Mechanism of hypochlorite-mediated inactivation of proteinase inhibition by alpha 2-macroglobulin. Biochemistry. 1999 Oct 19;38(42):13983–13990. doi: 10.1021/bi991438i. [DOI] [PubMed] [Google Scholar]
- Yang C. Y., Gu Z. W., Yang H. X., Yang M., Wiseman W. S., Rogers L. K., Welty S. E., Katta V., Rohde M. F., Smith C. V. Oxidation of bovine beta-casein by hypochlorite. Free Radic Biol Med. 1997;22(7):1235–1240. doi: 10.1016/s0891-5849(96)00551-5. [DOI] [PubMed] [Google Scholar]
- Yang C., Wang J., Krutchinsky A. N., Chait B. T., Morrisett J. D., Smith C. V. Selective oxidation in vitro by myeloperoxidase of the N-terminal amine in apolipoprotein B-100. J Lipid Res. 2001 Nov;42(11):1891–1896. [PubMed] [Google Scholar]