Abstract
The human G6f protein, which is encoded by a gene in the MHC, is a putative cell-surface receptor belonging to the immunoglobulin superfamily. The intracellular tail of G6f is 40 amino acids in length and contains one tyrosine residue (Y281), which is phosphorylated after treatment of cells with pervanadate. This tyrosine residue is found in a consensus-binding motif (YXN) for the Src homology 2 domains of Grb2 and Grb7 (where Grb stands for growth-factor-receptor-bound protein). Glutathione S-transferase pull-down assays showed that the interaction of G6f with both Grb2 and Grb7 is mediated through the Src homology 2 domains of these two proteins and is dependent on the phosphorylation of G6f. Immunoprecipitation experiments showed the interaction of full-length phosphorylated G6f with both full-length Grb2 and Grb7. Antibody cross-linking of G6f expressed in K562 cells resulted in a transient phosphorylation of p42/44 MAP kinase (also known as extracellular-signal-regulated protein kinase-1/2; MAP stands for mitogen-activated protein) which could be prevented by MAP kinase kinase (MEK) inhibitors. These results suggest a coupling of G6f with downstream signal transduction pathways involving Grb2 and Grb7, including the Ras-MAP kinase pathway.
Full Text
The Full Text of this article is available as a PDF (221.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguado B., Campbell R. D. Characterization of a human MHC class III region gene product with S-thioesterase activity. Biochem J. 1999 Aug 1;341(Pt 3):679–689. [PMC free article] [PubMed] [Google Scholar]
- Chothia C., Gelfand I., Kister A. Structural determinants in the sequences of immunoglobulin variable domain. J Mol Biol. 1998 May 1;278(2):457–479. doi: 10.1006/jmbi.1998.1653. [DOI] [PubMed] [Google Scholar]
- Downward J. The GRB2/Sem-5 adaptor protein. FEBS Lett. 1994 Jan 31;338(2):113–117. doi: 10.1016/0014-5793(94)80346-3. [DOI] [PubMed] [Google Scholar]
- Fiddes R. J., Campbell D. H., Janes P. W., Sivertsen S. P., Sasaki H., Wallasch C., Daly R. J. Analysis of Grb7 recruitment by heregulin-activated erbB receptors reveals a novel target selectivity for erbB3. J Biol Chem. 1998 Mar 27;273(13):7717–7724. doi: 10.1074/jbc.273.13.7717. [DOI] [PubMed] [Google Scholar]
- Gram H., Schmitz R., Zuber J. F., Baumann G. Identification of phosphopeptide ligands for the Src-homology 2 (SH2) domain of Grb2 by phage display. Eur J Biochem. 1997 Jun 15;246(3):633–637. doi: 10.1111/j.1432-1033.1997.00633.x. [DOI] [PubMed] [Google Scholar]
- Han D. C., Guan J. L. Association of focal adhesion kinase with Grb7 and its role in cell migration. J Biol Chem. 1999 Aug 20;274(34):24425–24430. doi: 10.1074/jbc.274.34.24425. [DOI] [PubMed] [Google Scholar]
- Han D. C., Shen T. L., Guan J. L. The Grb7 family proteins: structure, interactions with other signaling molecules and potential cellular functions. Oncogene. 2001 Oct 1;20(44):6315–6321. doi: 10.1038/sj.onc.1204775. [DOI] [PubMed] [Google Scholar]
- Hanifi Moghaddam P., de Knijf P., Roep B. O., Van der Auwera B., Naipal A., Gorus F., Schuit F., Giphart M. J. Genetic structure of IDDM1: two separate regions in the major histocompatibility complex contribute to susceptibility or protection. Belgian Diabetes Registry. Diabetes. 1998 Feb;47(2):263–269. [PubMed] [Google Scholar]
- Hassel B., Rathjen F. G., Volkmer H. Organization of the neurofascin gene and analysis of developmentally regulated alternative splicing. J Biol Chem. 1997 Nov 7;272(45):28742–28749. doi: 10.1074/jbc.272.45.28742. [DOI] [PubMed] [Google Scholar]
- He W., Rose D. W., Olefsky J. M., Gustafson T. A. Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the Grb10 Src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J Biol Chem. 1998 Mar 20;273(12):6860–6867. doi: 10.1074/jbc.273.12.6860. [DOI] [PubMed] [Google Scholar]
- Herr M., Dudbridge F., Zavattari P., Cucca F., Guja C., March R., Campbell R. D., Barnett A. H., Bain S. C., Todd J. A. Evaluation of fine mapping strategies for a multifactorial disease locus: systematic linkage and association analysis of IDDM1 in the HLA region on chromosome 6p21. Hum Mol Genet. 2000 May 22;9(9):1291–1301. doi: 10.1093/hmg/9.9.1291. [DOI] [PubMed] [Google Scholar]
- Hunkapiller T., Hood L. Diversity of the immunoglobulin gene superfamily. Adv Immunol. 1989;44:1–63. doi: 10.1016/s0065-2776(08)60639-2. [DOI] [PubMed] [Google Scholar]
- Kasus-Jacobi A., Béréziat V., Perdereau D., Girard J., Burnol A. F. Evidence for an interaction between the insulin receptor and Grb7. A role for two of its binding domains, PIR and SH2. Oncogene. 2000 Apr 13;19(16):2052–2059. doi: 10.1038/sj.onc.1203469. [DOI] [PubMed] [Google Scholar]
- Kasus-Jacobi A., Perdereau D., Auzan C., Clauser E., Van Obberghen E., Mauvais-Jarvis F., Girard J., Burnol A. F. Identification of the rat adapter Grb14 as an inhibitor of insulin actions. J Biol Chem. 1998 Oct 2;273(40):26026–26035. doi: 10.1074/jbc.273.40.26026. [DOI] [PubMed] [Google Scholar]
- Keegan K., Cooper J. A. Use of the two hybrid system to detect the association of the protein-tyrosine-phosphatase, SHPTP2, with another SH2-containing protein, Grb7. Oncogene. 1996 Apr 4;12(7):1537–1544. [PubMed] [Google Scholar]
- Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000 Oct 15;351(Pt 2):289–305. [PMC free article] [PubMed] [Google Scholar]
- Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mallya Meera, Campbell R. Duncan, Aguado Begoña. Transcriptional analysis of a novel cluster of LY-6 family members in the human and mouse major histocompatibility complex: five genes with many splice forms. Genomics. 2002 Jul;80(1):113–123. doi: 10.1006/geno.2002.6794. [DOI] [PubMed] [Google Scholar]
- Margolis B., Silvennoinen O., Comoglio F., Roonprapunt C., Skolnik E., Ullrich A., Schlessinger J. High-efficiency expression/cloning of epidermal growth factor-receptor-binding proteins with Src homology 2 domains. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8894–8898. doi: 10.1073/pnas.89.19.8894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marrosu M. G., Murru R., Murru M. R., Costa G., Zavattari P., Whalen M., Cocco E., Mancosu C., Schirru L., Solla E. Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia. Hum Mol Genet. 2001 Dec 1;10(25):2907–2916. doi: 10.1093/hmg/10.25.2907. [DOI] [PubMed] [Google Scholar]
- Milner C. M., Smith S. V., Carrillo M. B., Taylor G. L., Hollinshead M., Campbell R. D. Identification of a sialidase encoded in the human major histocompatibility complex. J Biol Chem. 1997 Feb 14;272(7):4549–4558. doi: 10.1074/jbc.272.7.4549. [DOI] [PubMed] [Google Scholar]
- Pawson T., Gish G. D., Nash P. SH2 domains, interaction modules and cellular wiring. Trends Cell Biol. 2001 Dec;11(12):504–511. doi: 10.1016/s0962-8924(01)02154-7. [DOI] [PubMed] [Google Scholar]
- Plagge A., Brümmendorf T. The gene of the neural cell recognition molecule F11: conserved exon-intron arrangement in genes of neural members of the immunoglobulin superfamily. Gene. 1997 Jun 19;192(2):215–225. doi: 10.1016/s0378-1119(97)00066-8. [DOI] [PubMed] [Google Scholar]
- Ribas G., Neville M. J., Campbell R. D. Single-nucleotide polymorphism detection by denaturing high-performance liquid chromatography and direct sequencing in genes in the MHC class III region encoding novel cell surface molecules. Immunogenetics. 2001 Jul;53(5):369–381. doi: 10.1007/s002510100343. [DOI] [PubMed] [Google Scholar]
- Singal D. P., Li J., Zhu Y. HLA class III region and susceptibility to rheumatoid arthritis. Clin Exp Rheumatol. 2000 Jul-Aug;18(4):485–491. [PubMed] [Google Scholar]
- Smith D. K., Xue H. Sequence profiles of immunoglobulin and immunoglobulin-like domains. J Mol Biol. 1997 Dec 12;274(4):530–545. doi: 10.1006/jmbi.1997.1432. [DOI] [PubMed] [Google Scholar]
- Steiner F., Weber K., Fürst D. O. Structure and expression of the gene encoding murine M-protein, a sarcomere-specific member of the immunoglobulin superfamily. Genomics. 1998 Apr 1;49(1):83–95. doi: 10.1006/geno.1998.5220. [DOI] [PubMed] [Google Scholar]
- Thömmes K., Lennartsson J., Carlberg M., Rönnstrand L. Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochem J. 1999 Jul 1;341(Pt 1):211–216. [PMC free article] [PubMed] [Google Scholar]
- Williams A. F., Barclay A. N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]
- Wojcik J., Girault J. A., Labesse G., Chomilier J., Mornon J. P., Callebaut I. Sequence analysis identifies a ras-associating (RA)-like domain in the N-termini of band 4.1/JEF domains and in the Grb7/10/14 adapter family. Biochem Biophys Res Commun. 1999 May 27;259(1):113–120. doi: 10.1006/bbrc.1999.0727. [DOI] [PubMed] [Google Scholar]
- Yaffe Michael B. Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol. 2002 Mar;3(3):177–186. doi: 10.1038/nrm759. [DOI] [PubMed] [Google Scholar]
- Zhang W., Trible R. P., Zhu M., Liu S. K., McGlade C. J., Samelson L. E. Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J Biol Chem. 2000 Jul 28;275(30):23355–23361. doi: 10.1074/jbc.M000404200. [DOI] [PubMed] [Google Scholar]
- de Vet E. C., Aguado B., Campbell R. D. G6b, a novel immunoglobulin superfamily member encoded in the human major histocompatibility complex, interacts with SHP-1 and SHP-2. J Biol Chem. 2001 Sep 5;276(45):42070–42076. doi: 10.1074/jbc.M103214200. [DOI] [PubMed] [Google Scholar]
- den Hertog J., Tracy S., Hunter T. Phosphorylation of receptor protein-tyrosine phosphatase alpha on Tyr789, a binding site for the SH3-SH2-SH3 adaptor protein GRB-2 in vivo. EMBO J. 1994 Jul 1;13(13):3020–3032. doi: 10.1002/j.1460-2075.1994.tb06601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]