Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 1;375(Pt 1):183–189. doi: 10.1042/BJ20030609

Variations in aggrecan structure modulate its susceptibility to aggrecanases.

Peter J Roughley 1, James Barnett 1, Fengrong Zuo 1, John S Mort 1
PMCID: PMC1223671  PMID: 12859252

Abstract

Proteoglycan aggregates and purified aggrecan from adult and fetal bovine cartilage and adult and neonatal human cartilage were subjected to in vitro degradation by recombinant aggrecanase-1 and aggrecanase-2. The ability of the aggrecanases to cleave within the aggrecan IGD (interglobular domain) and CS2 domain (chondroitin sulphate-rich domain 2) was monitored by SDS/PAGE and immunoblotting. Aggrecanase-2 showed a similar ability to cleave within the IGD of adult and immature aggrecan, whereas aggrecanase-1 was less efficient in cleavage in the IGD of immature aggrecan, for both the bovine and the human substrates. Both aggrecanases showed a similar ability to cleave within the CS2 domain of bovine aggrecan irrespective of age, but showed a much lower ability to cleave within the CS2 domain of human aggrecan. Equivalent results were obtained whether aggrecan was present in isolation or as part of proteoglycan aggregates. When proteoglycan aggregates were used, neither aggrecanase was able to cleave link protein. Thus, for aggrecan cleavage by aggrecanases, variations in cleavage efficiency exist with respect to the species and age of the animal from which the aggrecan is derived and the type of aggrecanase being used.

Full Text

The Full Text of this article is available as a PDF (191.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbaszade I., Liu R. Q., Yang F., Rosenfeld S. A., Ross O. H., Link J. R., Ellis D. M., Tortorella M. D., Pratta M. A., Hollis J. M. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem. 1999 Aug 13;274(33):23443–23450. doi: 10.1074/jbc.274.33.23443. [DOI] [PubMed] [Google Scholar]
  2. Arner E. C., Pratta M. A., Trzaskos J. M., Decicco C. P., Tortorella M. D. Generation and characterization of aggrecanase. A soluble, cartilage-derived aggrecan-degrading activity. J Biol Chem. 1999 Mar 5;274(10):6594–6601. doi: 10.1074/jbc.274.10.6594. [DOI] [PubMed] [Google Scholar]
  3. Barry F. P., Gaw J. U., Young C. N., Neame P. J. Hyaluronan-binding region of aggrecan from pig laryngeal cartilage. Amino acid sequence, analysis of N-linked oligosaccharides and location of the keratan sulphate. Biochem J. 1992 Sep 15;286(Pt 3):761–769. doi: 10.1042/bj2860761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barry F. P., Rosenberg L. C., Gaw J. U., Gaw J. U., Koob T. J., Neame P. J. N- and O-linked keratan sulfate on the hyaluronan binding region of aggrecan from mature and immature bovine cartilage. J Biol Chem. 1995 Sep 1;270(35):20516–20524. doi: 10.1074/jbc.270.35.20516. [DOI] [PubMed] [Google Scholar]
  5. Bayliss M. T., Roughley P. J. The properties of proteoglycan prepared from human articular cartilage by using associative caesium chloride gradients of high and low starting densities. Biochem J. 1985 Nov 15;232(1):111–117. doi: 10.1042/bj2320111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown G. M., Huckerby T. N., Bayliss M. T., Nieduszynski I. A. Human aggrecan keratan sulfate undergoes structural changes during adolescent development. J Biol Chem. 1998 Oct 9;273(41):26408–26414. doi: 10.1074/jbc.273.41.26408. [DOI] [PubMed] [Google Scholar]
  7. Caterson B., Christner J. E., Baker J. R., Couchman J. R. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans. Fed Proc. 1985 Feb;44(2):386–393. [PubMed] [Google Scholar]
  8. Colige A., Li S. W., Sieron A. L., Nusgens B. V., Prockop D. J., Lapière C. M. cDNA cloning and expression of bovine procollagen I N-proteinase: a new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2374–2379. doi: 10.1073/pnas.94.6.2374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Colige Alain, Vandenberghe Isabel, Thiry Marc, Lambert Charles A., Van Beeumen Jozef, Li Shi-Wu, Prockop Darwin J., Lapiere Charles M., Nusgens Betty V. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem. 2001 Dec 7;277(8):5756–5766. doi: 10.1074/jbc.M105601200. [DOI] [PubMed] [Google Scholar]
  10. Fernandes R. J., Hirohata S., Engle J. M., Colige A., Cohn D. H., Eyre D. R., Apte S. S. Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem. 2001 Jun 14;276(34):31502–31509. doi: 10.1074/jbc.M103466200. [DOI] [PubMed] [Google Scholar]
  11. Flannery C. R., Little C. B., Hughes C. E., Caterson B. Expression of ADAMTS homologues in articular cartilage. Biochem Biophys Res Commun. 1999 Jul 5;260(2):318–322. doi: 10.1006/bbrc.1999.0909. [DOI] [PubMed] [Google Scholar]
  12. Fosang A. J., Neame P. J., Last K., Hardingham T. E., Murphy G., Hamilton J. A. The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J Biol Chem. 1992 Sep 25;267(27):19470–19474. [PubMed] [Google Scholar]
  13. Hughes C. E., Büttner F. H., Eidenmüller B., Caterson B., Bartnik E. Utilization of a recombinant substrate rAgg1 to study the biochemical properties of aggrecanase in cell culture systems. J Biol Chem. 1997 Aug 8;272(32):20269–20274. doi: 10.1074/jbc.272.32.20269. [DOI] [PubMed] [Google Scholar]
  14. Lee E. R., Lamplugh L., Davoli M. A., Beauchemin A., Chan K., Mort J. S., Leblond C. P. Enzymes active in the areas undergoing cartilage resorption during the development of the secondary ossification center in the tibiae of rats ages 0-21 days: I. Two groups of proteinases cleave the core protein of aggrecan. Dev Dyn. 2001 Sep;222(1):52–70. doi: 10.1002/dvdy.1168. [DOI] [PubMed] [Google Scholar]
  15. Levy G. G., Nichols W. C., Lian E. C., Foroud T., McClintick J. N., McGee B. M., Yang A. Y., Siemieniak D. R., Stark K. R., Gruppo R. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature. 2001 Oct 4;413(6855):488–494. doi: 10.1038/35097008. [DOI] [PubMed] [Google Scholar]
  16. Lohmander L. S., Neame P. J., Sandy J. D. The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 1993 Sep;36(9):1214–1222. doi: 10.1002/art.1780360906. [DOI] [PubMed] [Google Scholar]
  17. Loulakis P., Shrikhande A., Davis G., Maniglia C. A. N-terminal sequence of proteoglycan fragments isolated from medium of interleukin-1-treated articular-cartilage cultures. Putative site(s) of enzymic cleavage. Biochem J. 1992 Jun 1;284(Pt 2):589–593. doi: 10.1042/bj2840589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mach L., Schwihla H., Stüwe K., Rowan A. D., Mort J. S., Glössl J. Activation of procathepsin B in human hepatoma cells: the conversion into the mature enzyme relies on the action of cathepsin B itself. Biochem J. 1993 Jul 15;293(Pt 2):437–442. doi: 10.1042/bj2930437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Malfait Anne-Marie, Liu Rui-Qin, Ijiri Kosei, Komiya Setsuro, Tortorella Micky D. Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem. 2002 Apr 15;277(25):22201–22208. doi: 10.1074/jbc.M200431200. [DOI] [PubMed] [Google Scholar]
  20. Mercuri F. A., Doege K. J., Arner E. C., Pratta M. A., Last K., Fosang A. J. Recombinant human aggrecan G1-G2 exhibits native binding properties and substrate specificity for matrix metalloproteinases and aggrecanase. J Biol Chem. 1999 Nov 5;274(45):32387–32395. doi: 10.1074/jbc.274.45.32387. [DOI] [PubMed] [Google Scholar]
  21. Murata K., Bjelle A. O. Age-dependent constitution of chondroitin sulfate isomers in cartilage proteoglycans under associative conditions. J Biochem. 1979 Aug;86(2):371–376. doi: 10.1093/oxfordjournals.jbchem.a132535. [DOI] [PubMed] [Google Scholar]
  22. Nakamura H., Fujii Y., Inoki I., Sugimoto K., Tanzawa K., Matsuki H., Miura R., Yamaguchi Y., Okada Y. Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J Biol Chem. 2000 Dec 8;275(49):38885–38890. doi: 10.1074/jbc.M003875200. [DOI] [PubMed] [Google Scholar]
  23. Olin A. I., Mörgelin M., Sasaki T., Timpl R., Heinegård D., Aspberg A. The proteoglycans aggrecan and Versican form networks with fibulin-2 through their lectin domain binding. J Biol Chem. 2001 Jan 12;276(2):1253–1261. doi: 10.1074/jbc.M006783200. [DOI] [PubMed] [Google Scholar]
  24. Plaas A. H., West L. A., Midura R. J. Keratan sulfate disaccharide composition determined by FACE analysis of keratanase II and endo-beta-galactosidase digestion products. Glycobiology. 2001 Oct;11(10):779–790. doi: 10.1093/glycob/11.10.779. [DOI] [PubMed] [Google Scholar]
  25. Pratta M. A., Tortorella M. D., Arner E. C. Age-related changes in aggrecan glycosylation affect cleavage by aggrecanase. J Biol Chem. 2000 Dec 15;275(50):39096–39102. doi: 10.1074/jbc.M006201200. [DOI] [PubMed] [Google Scholar]
  26. Rodríguez-Manzaneque Juan Carlos, Westling Jennifer, Thai Shelley N-M, Luque Alfonso, Knauper Vera, Murphy Gillian, Sandy John D., Iruela-Arispe M. Luisa. ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem Biophys Res Commun. 2002 Apr 26;293(1):501–508. doi: 10.1016/S0006-291X(02)00254-1. [DOI] [PubMed] [Google Scholar]
  27. Roughley P. J., Mort J. S. Ageing and the aggregating proteoglycans of human articular cartilage. Clin Sci (Lond) 1986 Oct;71(4):337–344. doi: 10.1042/cs0710337. [DOI] [PubMed] [Google Scholar]
  28. Roughley P. J., White R. J. Age-related changes in the structure of the proteoglycan subunits from human articular cartilage. J Biol Chem. 1980 Jan 10;255(1):217–224. [PubMed] [Google Scholar]
  29. Sandy J. D., Neame P. J., Boynton R. E., Flannery C. R. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem. 1991 May 15;266(14):8683–8685. [PubMed] [Google Scholar]
  30. Sandy J. D., Thompson V., Doege K., Verscharen C. The intermediates of aggrecanase-dependent cleavage of aggrecan in rat chondrosarcoma cells treated with interleukin-1. Biochem J. 2000 Oct 1;351(Pt 1):161–166. doi: 10.1042/0264-6021:3510161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sandy J. D., Verscharen C. Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J. 2001 Sep 15;358(Pt 3):615–626. doi: 10.1042/0264-6021:3580615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sandy J. D., Westling J., Kenagy R. D., Iruela-Arispe M. L., Verscharen C., Rodriguez-Mazaneque J. C., Zimmermann D. R., Lemire J. M., Fischer J. W., Wight T. N. Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem. 2001 Jan 26;276(16):13372–13378. doi: 10.1074/jbc.M009737200. [DOI] [PubMed] [Google Scholar]
  33. Sugimoto K., Takahashi M., Yamamoto Y., Shimada K., Tanzawa K. Identification of aggrecanase activity in medium of cartilage culture. J Biochem. 1999 Aug;126(2):449–455. doi: 10.1093/oxfordjournals.jbchem.a022471. [DOI] [PubMed] [Google Scholar]
  34. Sztrolovics R., Alini M., Roughley P. J., Mort J. S. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J. 1997 Aug 15;326(Pt 1):235–241. doi: 10.1042/bj3260235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sztrolovics Robert, White Robert J., Roughley Peter J., Mort John S. The mechanism of aggrecan release from cartilage differs with tissue origin and the agent used to stimulate catabolism. Biochem J. 2002 Mar 1;362(Pt 2):465–472. doi: 10.1042/0264-6021:3620465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tang B. L. ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol. 2001 Jan;33(1):33–44. doi: 10.1016/s1357-2725(00)00061-3. [DOI] [PubMed] [Google Scholar]
  37. Tortorella M. D., Burn T. C., Pratta M. A., Abbaszade I., Hollis J. M., Liu R., Rosenfeld S. A., Copeland R. A., Decicco C. P., Wynn R. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science. 1999 Jun 4;284(5420):1664–1666. doi: 10.1126/science.284.5420.1664. [DOI] [PubMed] [Google Scholar]
  38. Tortorella M. D., Pratta M., Liu R. Q., Austin J., Ross O. H., Abbaszade I., Burn T., Arner E. Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). J Biol Chem. 2000 Jun 16;275(24):18566–18573. doi: 10.1074/jbc.M909383199. [DOI] [PubMed] [Google Scholar]
  39. Tortorella M., Pratta M., Liu R. Q., Abbaszade I., Ross H., Burn T., Arner E. The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. J Biol Chem. 2000 Aug 18;275(33):25791–25797. doi: 10.1074/jbc.M001065200. [DOI] [PubMed] [Google Scholar]
  40. Tortorella Micky D., Liu Rui-Qin, Burn Timothy, Newton Robert C., Arner Elizabeth. Characterization of human aggrecanase 2 (ADAM-TS5): substrate specificity studies and comparison with aggrecanase 1 (ADAM-TS4). Matrix Biol. 2002 Oct;21(6):499–511. doi: 10.1016/s0945-053x(02)00069-0. [DOI] [PubMed] [Google Scholar]
  41. Watanabe H., Yamada Y., Kimata K. Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem. 1998 Oct;124(4):687–693. doi: 10.1093/oxfordjournals.jbchem.a022166. [DOI] [PubMed] [Google Scholar]
  42. Westling Jennifer, Fosang Amanda J., Last Karena, Thompson Vivian P., Tomkinson Kathy N., Hebert Tracy, McDonagh Thomas, Collins-Racie Lisa A., LaVallie Edward R., Morris Elisabeth A. ADAMTS4 cleaves at the aggrecanase site (Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain. J Biol Chem. 2002 Feb 19;277(18):16059–16066. doi: 10.1074/jbc.M108607200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES