Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 1;375(Pt 1):221–230. doi: 10.1042/BJ20030544

Identification of new leishmanicidal peptide lead structures by automated real-time monitoring of changes in intracellular ATP.

J Román Luque-Ortega 1, José M Saugar 1, Cristina Chiva 1, David Andreu 1, Luis Rivas 1
PMCID: PMC1223672  PMID: 12864731

Abstract

Leishmanicidal drugs interacting stoichiometrically with parasite plasma membrane lipids, thus promoting permeability, have raised significant expectations for Leishmania chemotherapy due to their nil or very low induction of resistance. Inherent in this process is a decrease in intracellular ATP, either wasted by ionic pumps to restore membrane potential or directly leaked through larger membrane lesions caused by the drug. We have adapted a luminescence method for fast automated real-time monitoring of this process, using Leishmania donovani promastigotes transfected with a cytoplasmic luciferase form, previously tested for anti-mitochondrial drugs. The system was first assayed against a set of well-known membrane-active drugs [amphotericin B, nystatin, cecropin A-melittin peptide CA(1-8)M(1-18)], plus two ionophoric polyethers (narasin and salinomycin) not previously tested on Leishmania, then used to screen seven new cecropin A-melittin hybrid peptides. All membrane-active compounds showed a good correlation between inhibition of luminescence and leishmanicidal activity. Induction of membrane permeability was demonstrated by dissipation of membrane potential, SYTOX trade mark Green influx and membrane damage assessed by electron microscopy, except for the polyethers, where ATP decrease was due to inhibition of its mitochondrial synthesis. Five of the test peptides showed an ED50 around 1 microM on promastigotes. These peptides, with equal or better activity than 26-residue-long CA(1-8)M(1-18), are the shortest leishmanicidal peptides described so far, and validate our luminescence assay as a fast and cheap screening tool for membrane-active compounds.

Full Text

The Full Text of this article is available as a PDF (231.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Fortes E., Ruiz-Pérez L. M., Bouillaud F., Rial E., Rivas L. Expression and regulation of mitochondrial uncoupling protein 1 from brown adipose tissue in Leishmania major promastigotes. Mol Biochem Parasitol. 1998 Jun 1;93(2):191–202. doi: 10.1016/s0166-6851(98)00029-2. [DOI] [PubMed] [Google Scholar]
  2. Andreu D., Ubach J., Boman A., Wåhlin B., Wade D., Merrifield R. B., Boman H. G. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett. 1992 Jan 20;296(2):190–194. doi: 10.1016/0014-5793(92)80377-s. [DOI] [PubMed] [Google Scholar]
  3. Azas N., Di Giorgio C., Delmas F., Gasquet M., Timon-David P. Assessment of amphotericin B susceptibility in Leishmania infantum promastigotes by flow cytometric membrane potential assay. Cytometry. 1997 Jun 1;28(2):165–169. doi: 10.1002/(sici)1097-0320(19970601)28:2<165::aid-cyto10>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  4. Bates P. A., Hermes I., Dwyer D. M. Golgi-mediated post-translational processing of secretory acid phosphatase by Leishmania donovani promastigotes. Mol Biochem Parasitol. 1990 Mar;39(2):247–255. doi: 10.1016/0166-6851(90)90063-r. [DOI] [PubMed] [Google Scholar]
  5. Casey N. H., Wessels R. H., Meissner H. H. Feedlot growth performance of steers on salinomycin, monensin and a daily rotation between the two. J S Afr Vet Assoc. 1994 Dec;65(4):160–163. [PubMed] [Google Scholar]
  6. Caughey B., Painter G. R., Gibbons W. A. Equilibrium cation binding selectivity of the carboxylic ionophore narasin A: a comparison with transport selectivities reported in two biological test systems. Biochem Pharmacol. 1986 Nov 15;35(22):4103–4105. doi: 10.1016/0006-2952(86)90035-3. [DOI] [PubMed] [Google Scholar]
  7. Chapman H. D. Use of anticoccidial drugs in broiler chickens in the USA: analysis for the years 1995 to 1999. Poult Sci. 2001 May;80(5):572–580. doi: 10.1093/ps/80.5.572. [DOI] [PubMed] [Google Scholar]
  8. Chicharro C., Granata C., Lozano R., Andreu D., Rivas L. N-terminal fatty acid substitution increases the leishmanicidal activity of CA(1-7)M(2-9), a cecropin-melittin hybrid peptide. Antimicrob Agents Chemother. 2001 Sep;45(9):2441–2449. doi: 10.1128/AAC.45.9.2441-2449.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen B. E., Ramos H., Gamargo M., Urbina J. The water and ionic permeability induced by polyene antibiotics across plasma membrane vesicles from Leishmania sp. Biochim Biophys Acta. 1986 Aug 7;860(1):57–65. doi: 10.1016/0005-2736(86)90498-0. [DOI] [PubMed] [Google Scholar]
  10. Croft Simon L., Yardley Vanessa. Chemotherapy of leishmaniasis. Curr Pharm Des. 2002;8(4):319–342. doi: 10.2174/1381612023396258. [DOI] [PubMed] [Google Scholar]
  11. Dixon E. Monensin-induced cation movements in bovine erythrocytes. Life Sci. 1990;47(1):37–50. doi: 10.1016/0024-3205(90)90564-8. [DOI] [PubMed] [Google Scholar]
  12. Durand R., Paul M., Pratlong F., Rivollet D., Dubreuil-Lemaire M. L., Houin R., Astier A., Deniau M. Leishmania infantum: lack of parasite resistance to amphotericin B in a clinically resistant visceral leishmaniasis. Antimicrob Agents Chemother. 1998 Aug;42(8):2141–2143. doi: 10.1128/aac.42.8.2141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Díaz-Achirica P., Ubach J., Guinea A., Andreu D., Rivas L. The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1-8)M(1-18), a synthetic cecropin A-melittin hybrid peptide. Biochem J. 1998 Feb 15;330(Pt 1):453–460. doi: 10.1042/bj3300453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fuller A. L., Golden J., McDougald L. R. Flow cytometric analysis of the response of Eimeria tenella (Coccidia) sporozoites to coccidiocidal effects of ionophores. J Parasitol. 1995 Dec;81(6):985–988. [PubMed] [Google Scholar]
  15. Guerin Philippe J., Olliaro Piero, Sundar Shyam, Boelaert Marleen, Croft Simon L., Desjeux Philippe, Wasunna Monique K., Bryceson Anthony D. M. Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis. 2002 Aug;2(8):494–501. doi: 10.1016/s1473-3099(02)00347-x. [DOI] [PubMed] [Google Scholar]
  16. Gumila C., Ancelin M. L., Jeminet G., Delort A. M., Miquel G., Vial H. J. Differential in vitro activities of ionophore compounds against Plasmodium falciparum and mammalian cells. Antimicrob Agents Chemother. 1996 Mar;40(3):602–608. doi: 10.1128/aac.40.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hernandez C., Mor A., Dagger F., Nicolas P., Hernandez A., Benedetti E. L., Dunia I. Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol. 1992 Dec;59(2):414–424. [PubMed] [Google Scholar]
  18. Herwaldt B. L. Leishmaniasis. Lancet. 1999 Oct 2;354(9185):1191–1199. doi: 10.1016/S0140-6736(98)10178-2. [DOI] [PubMed] [Google Scholar]
  19. Huang H. W. Action of antimicrobial peptides: two-state model. Biochemistry. 2000 Jul 25;39(29):8347–8352. doi: 10.1021/bi000946l. [DOI] [PubMed] [Google Scholar]
  20. Kiderlen A. F., Kaye P. M. A modified colorimetric assay of macrophage activation for intracellular cytotoxicity against Leishmania parasites. J Immunol Methods. 1990 Feb 20;127(1):11–18. doi: 10.1016/0022-1759(90)90334-r. [DOI] [PubMed] [Google Scholar]
  21. Luque-Ortega J. R., Rivero-Lezcano O. M., Croft S. L., Rivas L. In vivo monitoring of intracellular ATP levels in Leishmania donovani promastigotes as a rapid method to screen drugs targeting bioenergetic metabolism. Antimicrob Agents Chemother. 2001 Apr;45(4):1121–1125. doi: 10.1128/AAC.45.4.1121-1125.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mancheño J. M., Oñaderra M., Martínez del Pozo A., Díaz-Achirica P., Andreu D., Rivas L., Gavilanes J. G. Release of lipid vesicle contents by an antibacterial cecropin A-melittin hybrid peptide. Biochemistry. 1996 Jul 30;35(30):9892–9899. doi: 10.1021/bi953058c. [DOI] [PubMed] [Google Scholar]
  23. Mbongo N., Loiseau P. M., Billion M. A., Robert-Gero M. Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 1998 Feb;42(2):352–357. doi: 10.1128/aac.42.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mendoza M., Mijares A., Rojas H., Rodríguez J. P., Urbina J. A., DiPolo R. Physiological and morphological evidences for the presence acidocalcisomes in Trypanosoma evansi: single cell fluorescence and 31P NMR studies. Mol Biochem Parasitol. 2002 Nov-Dec;125(1-2):23–33. doi: 10.1016/s0166-6851(02)00166-4. [DOI] [PubMed] [Google Scholar]
  25. Mitani M., Yamanishi T., Miyazaki Y., Otake N. Salinomycin effects on mitochondrial ion translocation and respiration. Antimicrob Agents Chemother. 1976 Apr;9(4):655–660. doi: 10.1128/aac.9.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morales Miguel A., Cruz Israel, Rubio Jose M., Chicharro Carmen, Cañavate Carmen, Laguna Fernando, Alvar Jorge. Relapses versus reinfections in patients coinfected with Leishmania infantum and human immunodeficiency virus type 1. J Infect Dis. 2002 Apr 22;185(10):1533–1537. doi: 10.1086/340219. [DOI] [PubMed] [Google Scholar]
  27. Raether W., Mehlhorn H., Hofmann J., Bräu B., Ehrlich K. Flow cytometric analysis of Eimeria tenella sporozoite populations exposed to salinomycin sodium in vitro: a comparative study using light and electron microscopy and an in vitro sporozoite invasion-inhibition test. Parasitol Res. 1991;77(5):386–394. doi: 10.1007/BF00931633. [DOI] [PubMed] [Google Scholar]
  28. Ramos H., Valdivieso E., Gamargo M., Dagger F., Cohen B. E. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J Membr Biol. 1996 Jul;152(1):65–75. doi: 10.1007/s002329900086. [DOI] [PubMed] [Google Scholar]
  29. Riddell F. G., Tompsett S. J. The transport of Na+ and K+ ions through phospholipid bilayers mediated by the antibiotics salinomycin and narasin studied by 23Na- and 39K-NMR spectroscopy. Biochim Biophys Acta. 1990 May 9;1024(1):193–197. doi: 10.1016/0005-2736(90)90225-d. [DOI] [PubMed] [Google Scholar]
  30. Rinaldi Andrea C., Mangoni Maria Luisa, Rufo Anna, Luzi Carla, Barra Donatella, Zhao Hongxia, Kinnunen Paavo K. J., Bozzi Argante, Di Giulio Antonio, Simmaco Maurizio. Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem J. 2002 Nov 15;368(Pt 1):91–100. doi: 10.1042/BJ20020806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roy G., Dumas C., Sereno D., Wu Y., Singh A. K., Tremblay M. J., Ouellette M., Olivier M., Papadopoulou B. Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol Biochem Parasitol. 2000 Oct;110(2):195–206. doi: 10.1016/s0166-6851(00)00270-x. [DOI] [PubMed] [Google Scholar]
  32. Saha A. K., Mukherjee T., Bhaduri A. Mechanism of action of amphotericin B on Leishmania donovani promastigotes. Mol Biochem Parasitol. 1986 Jun;19(3):195–200. doi: 10.1016/0166-6851(86)90001-0. [DOI] [PubMed] [Google Scholar]
  33. Sereno D., Roy G., Lemesre J. L., Papadopoulou B., Ouellette M. DNA transformation of Leishmania infantum axenic amastigotes and their use in drug screening. Antimicrob Agents Chemother. 2001 Apr;45(4):1168–1173. doi: 10.1128/AAC.45.4.1168-1173.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Silva P. I., Jr, Daffre S., Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem. 2000 Oct 27;275(43):33464–33470. doi: 10.1074/jbc.M001491200. [DOI] [PubMed] [Google Scholar]
  35. Singh A. K., Papadopoulou B., Ouellette M. Gene amplification in amphotericin B-resistant Leishmania tarentolae. Exp Parasitol. 2001 Nov;99(3):141–147. doi: 10.1006/expr.2001.4663. [DOI] [PubMed] [Google Scholar]
  36. Smith C. K., 2nd, Galloway R. B., White S. L. Effect of ionophores on survival, penetration, and development of Eimeria tenella sporozoites in vitro. J Parasitol. 1981 Aug;67(4):511–516. [PubMed] [Google Scholar]
  37. Smith C. K., 2nd, Strout R. G. Eimeria tenella: effect of narasin, a polyether antibiotic on the ultrastructure of intracellular sporozoites. Exp Parasitol. 1980 Dec;50(3):426–436. doi: 10.1016/0014-4894(80)90045-4. [DOI] [PubMed] [Google Scholar]
  38. Sommer J. M., Cheng Q. L., Keller G. A., Wang C. C. In vivo import of firefly luciferase into the glycosomes of Trypanosoma brucei and mutational analysis of the C-terminal targeting signal. Mol Biol Cell. 1992 Jul;3(7):749–759. doi: 10.1091/mbc.3.7.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Thevissen K., Terras F. R., Broekaert W. F. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol. 1999 Dec;65(12):5451–5458. doi: 10.1128/aem.65.12.5451-5458.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wong D. T., Berg D. H., Hamill R. H., Wilkinson J. R. Ionophorous properties of narasin, a new polyether monocarboxylic acid antibiotic, in rat liver mitochondria. Biochem Pharmacol. 1977 Aug 1;26(15):1373–1376. doi: 10.1016/0006-2952(77)90359-8. [DOI] [PubMed] [Google Scholar]
  41. Wu M., Maier E., Benz R., Hancock R. E. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 1999 Jun 1;38(22):7235–7242. doi: 10.1021/bi9826299. [DOI] [PubMed] [Google Scholar]
  42. Zhang H., Huang H. M., Carson R. C., Mahmood J., Thomas H. M., Gibson G. E. Assessment of membrane potentials of mitochondrial populations in living cells. Anal Biochem. 2001 Nov 15;298(2):170–180. doi: 10.1006/abio.2001.5348. [DOI] [PubMed] [Google Scholar]
  43. Zilberstein D., Philosoph H., Gepstein A. Maintenance of cytoplasmic pH and proton motive force in promastigotes of Leishmania donovani. Mol Biochem Parasitol. 1989 Sep;36(2):109–117. doi: 10.1016/0166-6851(89)90183-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES