Abstract
Human interleukin-11 (hIL-11) is a multi-potential cytokine that is involved in numerous biological activities, such as haematopoiesis, osteoclastogenesis, neurogenesis and female fertility, and also displays anti-inflammatory properties. IL-11 is used clinically to treat chemotherapy-induced thrombocytopenia. Because of its broad spectrum of action, improved IL-11 agonists, as well as IL-11 antagonists, could be of interest for numerous clinical applications. IL-11 signalling is dependent on the formation of a tripartite ligand-receptor complex consisting of IL-11, the IL-11R (IL-11 receptor) alpha subunit (responsible for the specificity of the interaction) and gp130 (glycoprotein 130) receptor beta subunit (responsible for signal transduction). The interaction between IL-11 and IL-11Ralpha subunit occurs at its recently assigned site I. We have designed an IL-11 mutein whose hydrophobicity at site I has been increased. The mutein has been characterized in terms of structure, affinity, specificity and bioactivity. Electrophoretic analysis, gel filtration, IR spectroscopy and CD indicate that this new protein is more compact than wild-type IL-11. It binds to IL-11Ralpha with a three-fold-enhanced affinity, and retains the ability to recruit gp130 through site II. However, analysis of its biological activity revealed a complex pattern: although this mutein is 60-400-fold more active than wild-type IL-11 on the proliferation of 7TD1 murine hybridoma cell, it is less active than IL-11 on the proliferation of B9 cells, another murine hybridoma cell line. The results are interpreted on the basis of an IL-11 conformational change induced by the mutations, and the preferential use by the mutein of another unknown transducing receptor chain.
Full Text
The Full Text of this article is available as a PDF (260.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anguita J., Barthold S. W., Samanta S., Ryan J., Fikrig E. Selective anti-inflammatory action of interleukin-11 in murine Lyme disease: arthritis decreases while carditis persists. J Infect Dis. 1999 Mar;179(3):734–737. doi: 10.1086/314613. [DOI] [PubMed] [Google Scholar]
- Barton B. E., Shortall J., Jackson J. V. Interleukins 6 and 11 protect mice from mortality in a staphylococcal enterotoxin-induced toxic shock model. Infect Immun. 1996 Mar;64(3):714–718. doi: 10.1128/iai.64.3.714-718.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton V. A., Hall M. A., Hudson K. R., Heath J. K. Interleukin-11 signals through the formation of a hexameric receptor complex. J Biol Chem. 2000 Nov 17;275(46):36197–36203. doi: 10.1074/jbc.M004648200. [DOI] [PubMed] [Google Scholar]
- Barton V. A., Hudson K. R., Heath J. K. Identification of three distinct receptor binding sites of murine interleukin-11. J Biol Chem. 1999 Feb 26;274(9):5755–5761. doi: 10.1074/jbc.274.9.5755. [DOI] [PubMed] [Google Scholar]
- Blanc C., Vusio P., Schleinkofer K., Boisteau O., Pflanz S., Minvielle S., Grötzinger J., Müller-Newen G., Heinrich P. C., Jacques Y. Monoclonal antibodies against the human interleukin-11 receptor alpha-chain (IL-11Ralpha) and their use in studies of human mononuclear cells. J Immunol Methods. 2000 Jul 31;241(1-2):43–59. doi: 10.1016/s0022-1759(00)00194-0. [DOI] [PubMed] [Google Scholar]
- Bozza M., Bliss J. L., Maylor R., Erickson J., Donnelly L., Bouchard P., Dorner A. J., Trepicchio W. L. Interleukin-11 reduces T-cell-dependent experimental liver injury in mice. Hepatology. 1999 Dec;30(6):1441–1447. doi: 10.1002/hep.510300616. [DOI] [PubMed] [Google Scholar]
- Chevalier S., Fourcin M., Robledo O., Wijdenes J., Pouplard-Barthelaix A., Gascan H. Interleukin-6 family of cytokines induced activation of different functional sites expressed by gp130 transducing protein. J Biol Chem. 1996 Jun 21;271(25):14764–14772. doi: 10.1074/jbc.271.25.14764. [DOI] [PubMed] [Google Scholar]
- Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
- Clackson T., Ultsch M. H., Wells J. A., de Vos A. M. Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity. J Mol Biol. 1998 Apr 17;277(5):1111–1128. doi: 10.1006/jmbi.1998.1669. [DOI] [PubMed] [Google Scholar]
- Clackson T., Wells J. A. A hot spot of binding energy in a hormone-receptor interface. Science. 1995 Jan 20;267(5196):383–386. doi: 10.1126/science.7529940. [DOI] [PubMed] [Google Scholar]
- Czupryn M. J., McCoy J. M., Scoble H. A. Structure-function relationships in human interleukin-11. Identification of regions involved in activity by chemical modification and site-directed mutagenesis. J Biol Chem. 1995 Jan 13;270(2):978–985. doi: 10.1074/jbc.270.2.978. [DOI] [PubMed] [Google Scholar]
- Czupryn M., Bennett F., Dube J., Grant K., Scoble H., Sookdeo H., McCoy J. M. Alanine-scanning mutagenesis of human interleukin-11: identification of regions important for biological activity. Ann N Y Acad Sci. 1995 Jul 21;762:152–164. doi: 10.1111/j.1749-6632.1995.tb32323.x. [DOI] [PubMed] [Google Scholar]
- Denis C. V., Kwack K., Saffaripour S., Maganti S., André P., Schaub R. G., Wagner D. D. Interleukin 11 significantly increases plasma von Willebrand factor and factor VIII in wild type and von Willebrand disease mouse models. Blood. 2001 Jan 15;97(2):465–472. doi: 10.1182/blood.v97.2.465. [DOI] [PubMed] [Google Scholar]
- Du X., Williams D. A. Interleukin-11: review of molecular, cell biology, and clinical use. Blood. 1997 Jun 1;89(11):3897–3908. [PubMed] [Google Scholar]
- Fringeli U. P., Günthard H. H. Infrared membrane spectroscopy. Mol Biol Biochem Biophys. 1981;31:270–332. doi: 10.1007/978-3-642-81537-9_6. [DOI] [PubMed] [Google Scholar]
- Ghilardi Nico, Li Ji, Hongo Jo-Anne, Yi Sothy, Gurney Austin, de Sauvage Frederic J. A novel type I cytokine receptor is expressed on monocytes, signals proliferation, and activates STAT-3 and STAT-5. J Biol Chem. 2002 Mar 4;277(19):16831–16836. doi: 10.1074/jbc.M201140200. [DOI] [PubMed] [Google Scholar]
- Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds. Subcell Biochem. 1994;23:329–362. doi: 10.1007/978-1-4615-1863-1_8. [DOI] [PubMed] [Google Scholar]
- Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur J Biochem. 1990 Oct 24;193(2):409–420. doi: 10.1111/j.1432-1033.1990.tb19354.x. [DOI] [PubMed] [Google Scholar]
- Gordon M. S., McCaskill-Stevens W. J., Battiato L. A., Loewy J., Loesch D., Breeden E., Hoffman R., Beach K. J., Kuca B., Kaye J. A phase I trial of recombinant human interleukin-11 (neumega rhIL-11 growth factor) in women with breast cancer receiving chemotherapy. Blood. 1996 May 1;87(9):3615–3624. [PubMed] [Google Scholar]
- Gordon M. S. Thrombopoietic activity of recombinant human interleukin 11 in cancer patients receiving chemotherapy. Cancer Chemother Pharmacol. 1996;38 (Suppl):S96–S98. doi: 10.1007/s002800051047. [DOI] [PubMed] [Google Scholar]
- Greenwood-Van Meerveld B., Tyler K., Keith J. C., Jr Recombinant human interleukin-11 modulates ion transport and mucosal inflammation in the small intestine and colon. Lab Invest. 2000 Aug;80(8):1269–1280. doi: 10.1038/labinvest.3780135. [DOI] [PubMed] [Google Scholar]
- Grötzinger J., Kernebeck T., Kallen K. J., Rose-John S. IL-6 type cytokine receptor complexes: hexamer, tetramer or both? Biol Chem. 1999 Jul-Aug;380(7-8):803–813. doi: 10.1515/BC.1999.100. [DOI] [PubMed] [Google Scholar]
- Grötzinger J., Kurapkat G., Wollmer A., Kalai M., Rose-John S. The family of the IL-6-type cytokines: specificity and promiscuity of the receptor complexes. Proteins. 1997 Jan;27(1):96–109. [PubMed] [Google Scholar]
- Hilton D. J., Hilton A. A., Raicevic A., Rakar S., Harrison-Smith M., Gough N. M., Begley C. G., Metcalf D., Nicola N. A., Willson T. A. Cloning of a murine IL-11 receptor alpha-chain; requirement for gp130 for high affinity binding and signal transduction. EMBO J. 1994 Oct 17;13(20):4765–4775. doi: 10.1002/j.1460-2075.1994.tb06802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson K. R., Vernallis A. B., Heath J. K. Characterization of the receptor binding sites of human leukemia inhibitory factor and creation of antagonists. J Biol Chem. 1996 May 17;271(20):11971–11978. doi: 10.1074/jbc.271.20.11971. [DOI] [PubMed] [Google Scholar]
- Isaacs C., Robert N. J., Bailey F. A., Schuster M. W., Overmoyer B., Graham M., Cai B., Beach K. J., Loewy J. W., Kaye J. A. Randomized placebo-controlled study of recombinant human interleukin-11 to prevent chemotherapy-induced thrombocytopenia in patients with breast cancer receiving dose-intensive cyclophosphamide and doxorubicin. J Clin Oncol. 1997 Nov;15(11):3368–3377. doi: 10.1200/JCO.1997.15.11.3368. [DOI] [PubMed] [Google Scholar]
- Jacques Y., Minvielle S., Müller-Newen G., Heinrich P. C., Grötzinger J., Montero-Julian F., Brailly H., Wilkin J. M., Content J. The interleukin-11/receptor complex: rational design of agonists/antagonists and immunoassays potentially useful in human therapy. Res Immunol. 1998 Sep-Oct;149(7-8):737–740. doi: 10.1016/s0923-2494(99)80049-2. [DOI] [PubMed] [Google Scholar]
- Kalai M., Montero-Julian F. A., Grötzinger J., Fontaine V., Vandenbussche P., Deschuyteneer R., Wollmer A., Brailly H., Content J. Analysis of the human interleukin-6/human interleukin-6 receptor binding interface at the amino acid level: proposed mechanism of interaction. Blood. 1997 Feb 15;89(4):1319–1333. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lebeau B., Montero Julian F. A., Wijdenes J., Müller-Newen G., Dahmen H., Chérel M., Heinrich P. C., Brailly H., Hallet M. M., Godard A. Reconstitution of two isoforms of the human interleukin-11 receptor and comparison of their functional properties. FEBS Lett. 1997 Apr 28;407(2):141–147. doi: 10.1016/s0014-5793(97)00326-8. [DOI] [PubMed] [Google Scholar]
- Leng S. X., Elias J. A. Interleukin-11 inhibits macrophage interleukin-12 production. J Immunol. 1997 Sep 1;159(5):2161–2168. [PubMed] [Google Scholar]
- Neddermann P., Graziani R., Ciliberto G., Paonessa G. Functional expression of soluble human interleukin-11 (IL-11) receptor alpha and stoichiometry of in vitro IL-11 receptor complexes with gp130. J Biol Chem. 1996 Nov 29;271(48):30986–30991. doi: 10.1074/jbc.271.48.30986. [DOI] [PubMed] [Google Scholar]
- Neipel F., Albrecht J. C., Ensser A., Huang Y. Q., Li J. J., Friedman-Kien A. E., Fleckenstein B. Human herpesvirus 8 encodes a homolog of interleukin-6. J Virol. 1997 Jan;71(1):839–842. doi: 10.1128/jvi.71.1.839-842.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opal S. M., Jhung J. W., Keith J. C., Jr, Goldman S. J., Palardy J. E., Parejo N. A. Additive effects of human recombinant interleukin-11 and granulocyte colony-stimulating factor in experimental gram-negative sepsis. Blood. 1999 May 15;93(10):3467–3472. [PubMed] [Google Scholar]
- Orazi A., Du X., Yang Z., Kashai M., Williams D. A. Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Invest. 1996 Jul;75(1):33–42. [PubMed] [Google Scholar]
- Panayotatos N., Radziejewska E., Acheson A., Somogyi R., Thadani A., Hendrickson W. A., McDonald N. Q. Localization of functional receptor epitopes on the structure of ciliary neurotrophic factor indicates a conserved, function-related epitope topography among helical cytokines. J Biol Chem. 1995 Jun 9;270(23):14007–14014. doi: 10.1074/jbc.270.23.14007. [DOI] [PubMed] [Google Scholar]
- Paul S. R., Bennett F., Calvetti J. A., Kelleher K., Wood C. R., O'Hara R. M., Jr, Leary A. C., Sibley B., Clark S. C., Williams D. A. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7512–7516. doi: 10.1073/pnas.87.19.7512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. L., Wang L., Albert L., Keith J. C., Jr, Dorner A. J. Molecular effects of recombinant human interleukin-11 in the HLA-B27 rat model of inflammatory bowel disease. Lab Invest. 1998 Dec;78(12):1503–1512. [PubMed] [Google Scholar]
- Redlich C. A., Gao X., Rockwell S., Kelley M., Elias J. A. IL-11 enhances survival and decreases TNF production after radiation-induced thoracic injury. J Immunol. 1996 Aug 15;157(4):1705–1710. [PubMed] [Google Scholar]
- Sands B. E., Bank S., Sninsky C. A., Robinson M., Katz S., Singleton J. W., Miner P. B., Safdi M. A., Galandiuk S., Hanauer S. B. Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn's disease. Gastroenterology. 1999 Jul;117(1):58–64. doi: 10.1016/s0016-5085(99)70550-0. [DOI] [PubMed] [Google Scholar]
- Schwertschlag U. S., Trepicchio W. L., Dykstra K. H., Keith J. C., Turner K. J., Dorner A. J. Hematopoietic, immunomodulatory and epithelial effects of interleukin-11. Leukemia. 1999 Sep;13(9):1307–1315. doi: 10.1038/sj.leu.2401514. [DOI] [PubMed] [Google Scholar]
- Senaldi G., Varnum B. C., Sarmiento U., Starnes C., Lile J., Scully S., Guo J., Elliott G., McNinch J., Shaklee C. L. Novel neurotrophin-1/B cell-stimulating factor-3: a cytokine of the IL-6 family. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11458–11463. doi: 10.1073/pnas.96.20.11458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonis S. T., Van Vugt A. G., McDonald J., Dotoli E., Schwertschlag U., Szklut P., Keith J. Mitigating effects of interleukin 11 on consecutive courses of 5-fluorouracil-induced ulcerative mucositis in hamsters. Cytokine. 1997 Aug;9(8):605–612. doi: 10.1006/cyto.1997.0208. [DOI] [PubMed] [Google Scholar]
- Stemmer W. P., Morris S. K. Enzymatic inverse PCR: a restriction site independent, single-fragment method for high-efficiency, site-directed mutagenesis. Biotechniques. 1992 Aug;13(2):214–220. [PubMed] [Google Scholar]
- Tacken I., Dahmen H., Boisteau O., Minvielle S., Jacques Y., Grötzinger J., Küster A., Horsten U., Blanc C., Montero-Julian F. A. Definition of receptor binding sites on human interleukin-11 by molecular modeling-guided mutagenesis. Eur J Biochem. 1999 Oct;265(2):645–655. doi: 10.1046/j.1432-1327.1999.00755.x. [DOI] [PubMed] [Google Scholar]
- Tepler I., Elias L., Smith J. W., 2nd, Hussein M., Rosen G., Chang A. Y., Moore J. O., Gordon M. S., Kuca B., Beach K. J. A randomized placebo-controlled trial of recombinant human interleukin-11 in cancer patients with severe thrombocytopenia due to chemotherapy. Blood. 1996 May 1;87(9):3607–3614. [PubMed] [Google Scholar]
- Trepicchio W. L., Bozza M., Bouchard P., Dorner A. J. Protective effect of rhIL-11 in a murine model of acetaminophen-induced hepatotoxicity. Toxicol Pathol. 2001 Mar-Apr;29(2):242–249. doi: 10.1080/019262301317052521. [DOI] [PubMed] [Google Scholar]
- Trepicchio W. L., Bozza M., Pedneault G., Dorner A. J. Recombinant human IL-11 attenuates the inflammatory response through down-regulation of proinflammatory cytokine release and nitric oxide production. J Immunol. 1996 Oct 15;157(8):3627–3634. [PubMed] [Google Scholar]
- Trepicchio W. L., Ozawa M., Walters I. B., Kikuchi T., Gilleaudeau P., Bliss J. L., Schwertschlag U., Dorner A. J., Krueger J. G. Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in psoriasis lesions. J Clin Invest. 1999 Dec;104(11):1527–1537. doi: 10.1172/JCI6910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trepicchio W. L., Wang L., Bozza M., Dorner A. J. IL-11 regulates macrophage effector function through the inhibition of nuclear factor-kappaB. J Immunol. 1997 Dec 1;159(11):5661–5670. [PubMed] [Google Scholar]
- Van Snick J., Cayphas S., Vink A., Uyttenhove C., Coulie P. G., Rubira M. R., Simpson R. J. Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9679–9683. doi: 10.1073/pnas.83.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venyaminov SYu, Kalnin N. N. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers. 1990;30(13-14):1243–1257. doi: 10.1002/bip.360301309. [DOI] [PubMed] [Google Scholar]
- Walmsley M., Butler D. M., Marinova-Mutafchieva L., Feldmann M. An anti-inflammatory role for interleukin-11 in established murine collagen-induced arthritis. Immunology. 1998 Sep;95(1):31–37. doi: 10.1046/j.1365-2567.1998.00568.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Xiao-Ming, Wilkin Jean-Marc, Boisteau Olivier, Harmegnies Dimitri, Blanc Chrystel, Vandenbussche Paul, Montero-Julian Félix A., Jacques Yannick, Content Jean. Engineering and use of (32)P-labeled human recombinant interleukin-11 for receptor binding studies. Eur J Biochem. 2002 Jan;269(1):61–68. doi: 10.1046/j.0014-2956.2002.02622.x. [DOI] [PubMed] [Google Scholar]
- de Vos A. M., Ultsch M., Kossiakoff A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992 Jan 17;255(5042):306–312. doi: 10.1126/science.1549776. [DOI] [PubMed] [Google Scholar]