Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 15;375(Pt 2):365–371. doi: 10.1042/BJ20030022

Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation.

Tatsuo Furuyama 1, Kazuko Kitayama 1, Hitoshi Yamashita 1, Nozomu Mori 1
PMCID: PMC1223677  PMID: 12820900

Abstract

A forkhead-type transcription factor, DAF-16, is located in the most downstream part of the insulin signalling pathway via PI3K (phosphoinositide 3-kinase). It is essential for the extension of life-span and is also involved in dauer formation induced by food deprivation in Caenorhabditis elegans. In the present study, we addressed whether or not FOXO members AFX, FKHR (forkhead homologue in rhabdomyosarcoma) and FKHRL1 (FKHR-like protein 1), mammalian counterparts of DAF-16, are involved in starvation stress. We found a remarkable selective induction of FKHR and FKHRL1 transcripts in skeletal muscle of mice during starvation. The induction of FKHR gene expression was observed at 6 h after food deprivation, peaked at 12 h, and returned to the basal level by 24 h of refeeding. The induction was also found in skeletal muscle of mice with glucocorticoid treatment. Moreover, we found that the levels of PDK4 (pyruvate dehydrogenase kinase 4) gene expression were up-regulated through the direct binding of FKHR to the promoter region of the gene in C2C12 cells. These results suggest that FKHR has an important role in the regulation of energy metabolism, at least in part, through the up-regulation of PDK4 gene expression in skeletal muscle during starvation.

Full Text

The Full Text of this article is available as a PDF (255.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayala J. E., Streeper R. S., Desgrosellier J. S., Durham S. K., Suwanichkul A., Svitek C. A., Goldman J. K., Barr F. G., Powell D. R., O'Brien R. M. Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence. Diabetes. 1999 Sep;48(9):1885–1889. doi: 10.2337/diabetes.48.9.1885. [DOI] [PubMed] [Google Scholar]
  2. Barthel A., Schmoll D., Krüger K. D., Bahrenberg G., Walther R., Roth R. A., Joost H. G. Differential regulation of endogenous glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression by the forkhead transcription factor FKHR in H4IIE-hepatoma cells. Biochem Biophys Res Commun. 2001 Jul 27;285(4):897–902. doi: 10.1006/bbrc.2001.5261. [DOI] [PubMed] [Google Scholar]
  3. Biggs W. H., 3rd, Meisenhelder J., Hunter T., Cavenee W. K., Arden K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7421–7426. doi: 10.1073/pnas.96.13.7421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowker-Kinley M. M., Davis W. I., Wu P., Harris R. A., Popov K. M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998 Jan 1;329(Pt 1):191–196. doi: 10.1042/bj3290191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brunet A., Bonni A., Zigmond M. J., Lin M. Z., Juo P., Hu L. S., Anderson M. J., Arden K. C., Blenis J., Greenberg M. E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999 Mar 19;96(6):857–868. doi: 10.1016/s0092-8674(00)80595-4. [DOI] [PubMed] [Google Scholar]
  6. Furuyama T., Nakazawa T., Nakano I., Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J. 2000 Jul 15;349(Pt 2):629–634. doi: 10.1042/0264-6021:3490629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furuyama Tatsuo, Yamashita Hitoshi, Kitayama Kazuko, Higami Yoshikazu, Shimokawa Isao, Mori Nozomu. Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHRL1, and AFX) in the rat skeletal muscles. Microsc Res Tech. 2002 Nov 15;59(4):331–334. doi: 10.1002/jemt.10213. [DOI] [PubMed] [Google Scholar]
  8. Guarente L., Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000 Nov 9;408(6809):255–262. doi: 10.1038/35041700. [DOI] [PubMed] [Google Scholar]
  9. Hall R. K., Yamasaki T., Kucera T., Waltner-Law M., O'Brien R., Granner D. K. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. J Biol Chem. 2000 Sep 29;275(39):30169–30175. doi: 10.1074/jbc.M004898200. [DOI] [PubMed] [Google Scholar]
  10. Hanson R. W., Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem. 1997;66:581–611. doi: 10.1146/annurev.biochem.66.1.581. [DOI] [PubMed] [Google Scholar]
  11. Holness Mark J., Bulmer Karen, Gibbons Geoffrey F., Sugden Mary C. Up-regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) protein expression in oxidative skeletal muscle does not require the obligatory participation of peroxisome-proliferator-activated receptor alpha (PPARalpha). Biochem J. 2002 Sep 15;366(Pt 3):839–846. doi: 10.1042/BJ20020754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holness Mark J., Smith Nicholas D., Bulmer Karen, Hopkins Teresa, Gibbons Geoffrey F., Sugden Mary C. Evaluation of the role of peroxisome-proliferator-activated receptor alpha in the regulation of cardiac pyruvate dehydrogenase kinase 4 protein expression in response to starvation, high-fat feeding and hyperthyroidism. Biochem J. 2002 Jun 15;364(Pt 3):687–694. doi: 10.1042/BJ20011841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huang Boli, Wu Pengfei, Bowker-Kinley Melissa M., Harris Robert A. Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin. Diabetes. 2002 Feb;51(2):276–283. doi: 10.2337/diabetes.51.2.276. [DOI] [PubMed] [Google Scholar]
  14. Jagoe R. Thomas, Lecker Stewart H., Gomes Marcelo, Goldberg Alfred L. Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. FASEB J. 2002 Nov;16(13):1697–1712. doi: 10.1096/fj.02-0312com. [DOI] [PubMed] [Google Scholar]
  15. Kamei Yasutomi, Mizukami Junko, Miura Shinji, Suzuki Miki, Takahashi Nobuyuki, Kawada Teruo, Taniguchi Tomoyasu, Ezaki Osamu. A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett. 2003 Feb 11;536(1-3):232–236. doi: 10.1016/s0014-5793(03)00062-0. [DOI] [PubMed] [Google Scholar]
  16. Kliewer S. A., Xu H. E., Lambert M. H., Willson T. M. Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res. 2001;56:239–263. doi: 10.1210/rp.56.1.239. [DOI] [PubMed] [Google Scholar]
  17. Larsen P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8905–8909. doi: 10.1073/pnas.90.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee Cheol-Koo, Allison David B., Brand Jaap, Weindruch Richard, Prolla Tomas A. Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci U S A. 2002 Nov 5;99(23):14988–14993. doi: 10.1073/pnas.232308999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lithgow G. J., White T. M., Melov S., Johnson T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7540–7544. doi: 10.1073/pnas.92.16.7540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Majer M., Popov K. M., Harris R. A., Bogardus C., Prochazka M. Insulin downregulates pyruvate dehydrogenase kinase (PDK) mRNA: potential mechanism contributing to increased lipid oxidation in insulin-resistant subjects. Mol Genet Metab. 1998 Oct;65(2):181–186. doi: 10.1006/mgme.1998.2748. [DOI] [PubMed] [Google Scholar]
  21. Medina R., Wing S. S., Goldberg A. L. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Biochem J. 1995 May 1;307(Pt 3):631–637. doi: 10.1042/bj3070631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mithieux G., Vidal H., Zitoun C., Bruni N., Daniele N., Minassian C. Glucose-6-phosphatase mRNA and activity are increased to the same extent in kidney and liver of diabetic rats. Diabetes. 1996 Jul;45(7):891–896. doi: 10.2337/diab.45.7.891. [DOI] [PubMed] [Google Scholar]
  23. Murakami S., Johnson T. E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics. 1996 Jul;143(3):1207–1218. doi: 10.1093/genetics/143.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nakae J., Kitamura T., Silver D. L., Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001 Nov;108(9):1359–1367. doi: 10.1172/JCI12876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakae Jun, Kitamura Tadahiro, Kitamura Yukari, Biggs William H., 3rd, Arden Karen C., Accili Domenico. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell. 2003 Jan;4(1):119–129. doi: 10.1016/s1534-5807(02)00401-x. [DOI] [PubMed] [Google Scholar]
  26. Richards JoAnne S., Sharma S. C., Falender Allison E., Lo Yuet H. Expression of FKHR, FKHRL1, and AFX genes in the rodent ovary: evidence for regulation by IGF-I, estrogen, and the gonadotropins. Mol Endocrinol. 2002 Mar;16(3):580–599. doi: 10.1210/mend.16.3.0806. [DOI] [PubMed] [Google Scholar]
  27. Rowles J., Scherer S. W., Xi T., Majer M., Nickle D. C., Rommens J. M., Popov K. M., Harris R. A., Riebow N. L., Xia J. Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J Biol Chem. 1996 Sep 13;271(37):22376–22382. doi: 10.1074/jbc.271.37.22376. [DOI] [PubMed] [Google Scholar]
  28. Schmoll D., Walker K. S., Alessi D. R., Grempler R., Burchell A., Guo S., Walther R., Unterman T. G. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J Biol Chem. 2000 Nov 17;275(46):36324–36333. doi: 10.1074/jbc.M003616200. [DOI] [PubMed] [Google Scholar]
  29. Schwartz M. W., Strack A. M., Dallman M. F. Evidence that elevated plasma corticosterone levels are the cause of reduced hypothalamic corticotrophin-releasing hormone gene expression in diabetes. Regul Pept. 1997 Oct 31;72(2-3):105–112. doi: 10.1016/s0167-0115(97)01043-4. [DOI] [PubMed] [Google Scholar]
  30. Sugden M. C., Bulmer K., Gibbons G. F., Holness M. J. Role of peroxisome proliferator-activated receptor-alpha in the mechanism underlying changes in renal pyruvate dehydrogenase kinase isoform 4 protein expression in starvation and after refeeding. Arch Biochem Biophys. 2001 Nov 15;395(2):246–252. doi: 10.1006/abbi.2001.2586. [DOI] [PubMed] [Google Scholar]
  31. Sugden M. C., Lall H. S., Harris R. A., Holness M. J. Selective modification of the pyruvate dehydrogenase kinase isoform profile in skeletal muscle in hyperthyroidism: implications for the regulatory impact of glucose on fatty acid oxidation. J Endocrinol. 2000 Nov;167(2):339–345. doi: 10.1677/joe.0.1670339. [DOI] [PubMed] [Google Scholar]
  32. Sugden Mary C., Bulmer Karen, Gibbons Geoffrey F., Knight Brian L., Holness Mark J. Peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin. Biochem J. 2002 Jun 1;364(Pt 2):361–368. doi: 10.1042/BJ20011699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wing S. S., Haas A. L., Goldberg A. L. Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation. Biochem J. 1995 May 1;307(Pt 3):639–645. doi: 10.1042/bj3070639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wu P., Inskeep K., Bowker-Kinley M. M., Popov K. M., Harris R. A. Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes. 1999 Aug;48(8):1593–1599. doi: 10.2337/diabetes.48.8.1593. [DOI] [PubMed] [Google Scholar]
  35. Wu P., Sato J., Zhao Y., Jaskiewicz J., Popov K. M., Harris R. A. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J. 1998 Jan 1;329(Pt 1):197–201. doi: 10.1042/bj3290197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES