Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 15;375(Pt 2):425–432. doi: 10.1042/BJ20030649

Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition and that support cell attachment.

Timothy M Ritty 1, Thomas J Broekelmann 1, Claudio C Werneck 1, Robert P Mecham 1
PMCID: PMC1223679  PMID: 12837131

Abstract

Fibrillin-1 and -2 are large modular extracellular matrix glycoproteins found in many vertebrate organ systems and are known to be key components of the elastic fibre. In the present study, we identify a new heparin-binding region in fibrillin-2 between exons 18 and 24. Additionally, we have narrowed the location of heparin-binding activity previously identified in fibrillin-1 to the last 17 residues of the mature proteolytically processed protein. This domain demonstrated higher activity as a multimer than as a monomer. The fibrillin-1 C-terminal site supported cell attachment in each of nine cell types tested. Attachment was shown to be mediated by cell-surface heparan sulphate proteoglycans. Fibrillin-1 has been shown previously to have heparin-binding activity that is important for matrix deposition of the molecule by fibroblasts. This function in deposition was confirmed in two additional fibrillin-producing cell types (osteosarcoma and epithelial cells) for the deposition of both fibrillin-1 and -2 into the extracellular matrix.

Full Text

The Full Text of this article is available as a PDF (281.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernfield M., Götte M., Park P. W., Reizes O., Fitzgerald M. L., Lincecum J., Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–777. doi: 10.1146/annurev.biochem.68.1.729. [DOI] [PubMed] [Google Scholar]
  2. Bloom L., Ingham K. C., Hynes R. O. Fibronectin regulates assembly of actin filaments and focal contacts in cultured cells via the heparin-binding site in repeat III13. Mol Biol Cell. 1999 May;10(5):1521–1536. doi: 10.1091/mbc.10.5.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cardin A. D., Weintraub H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989 Jan-Feb;9(1):21–32. doi: 10.1161/01.atv.9.1.21. [DOI] [PubMed] [Google Scholar]
  4. Carey D. J. Syndecans: multifunctional cell-surface co-receptors. Biochem J. 1997 Oct 1;327(Pt 1):1–16. doi: 10.1042/bj3270001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. D'Arrigo C., Burl S., Withers A. P., Dobson H., Black C., Boxer M. TGF-beta1 binding protein-like modules of fibrillin-1 and -2 mediate integrin-dependent cell adhesion. Connect Tissue Res. 1998;37(1-2):29–51. doi: 10.3109/03008209809028898. [DOI] [PubMed] [Google Scholar]
  6. Hoffman M. P., Nomizu M., Roque E., Lee S., Jung D. W., Yamada Y., Kleinman H. K. Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J Biol Chem. 1998 Oct 30;273(44):28633–28641. doi: 10.1074/jbc.273.44.28633. [DOI] [PubMed] [Google Scholar]
  7. Kishore U., Eggleton P., Reid K. B. Modular organization of carbohydrate recognition domains in animal lectins. Matrix Biol. 1997 Mar;15(8-9):583–592. doi: 10.1016/s0945-053x(97)90035-4. [DOI] [PubMed] [Google Scholar]
  8. Klass C. M., Couchman J. R., Woods A. Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci. 2000 Feb;113(Pt 3):493–506. doi: 10.1242/jcs.113.3.493. [DOI] [PubMed] [Google Scholar]
  9. Landegren U. Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens. J Immunol Methods. 1984 Mar 16;67(2):379–388. doi: 10.1016/0022-1759(84)90477-0. [DOI] [PubMed] [Google Scholar]
  10. Laterra J., Silbert J. E., Culp L. A. Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J Cell Biol. 1983 Jan;96(1):112–123. doi: 10.1083/jcb.96.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu W., Litwack E. D., Stanley M. J., Langford J. K., Lander A. D., Sanderson R. D. Heparan sulfate proteoglycans as adhesive and anti-invasive molecules. Syndecans and glypican have distinct functions. J Biol Chem. 1998 Aug 28;273(35):22825–22832. doi: 10.1074/jbc.273.35.22825. [DOI] [PubMed] [Google Scholar]
  12. Margalit H., Fischer N., Ben-Sasson S. A. Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem. 1993 Sep 15;268(26):19228–19231. [PubMed] [Google Scholar]
  13. Milewicz D. M., Grossfield J., Cao S. N., Kielty C., Covitz W., Jewett T. A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J Clin Invest. 1995 May;95(5):2373–2378. doi: 10.1172/JCI117930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Milewicz D. M., Pyeritz R. E., Crawford E. S., Byers P. H. Marfan syndrome: defective synthesis, secretion, and extracellular matrix formation of fibrillin by cultured dermal fibroblasts. J Clin Invest. 1992 Jan;89(1):79–86. doi: 10.1172/JCI115589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pfaff M., Reinhardt D. P., Sakai L. Y., Timpl R. Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett. 1996 Apr 22;384(3):247–250. doi: 10.1016/0014-5793(96)00325-0. [DOI] [PubMed] [Google Scholar]
  16. Ritty T. M., Broekelmann T., Tisdale C., Milewicz D. M., Mecham R. P. Processing of the fibrillin-1 carboxyl-terminal domain. J Biol Chem. 1999 Mar 26;274(13):8933–8940. doi: 10.1074/jbc.274.13.8933. [DOI] [PubMed] [Google Scholar]
  17. Rongish B. J., Drake C. J., Argraves W. S., Little C. D. Identification of the developmental marker, JB3-antigen, as fibrillin-2 and its de novo organization into embryonic microfibrous arrays. Dev Dyn. 1998 Jul;212(3):461–471. doi: 10.1002/(SICI)1097-0177(199807)212:3<461::AID-AJA13>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  18. Sakamoto H., Broekelmann T., Cheresh D. A., Ramirez F., Rosenbloom J., Mecham R. P. Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem. 1996 Mar 1;271(9):4916–4922. [PubMed] [Google Scholar]
  19. Saunders S., Bernfield M. Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J Cell Biol. 1988 Feb;106(2):423–430. doi: 10.1083/jcb.106.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tiedemann K., Bätge B., Müller P. K., Reinhardt D. P. Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem. 2001 Jul 18;276(38):36035–36042. doi: 10.1074/jbc.M104985200. [DOI] [PubMed] [Google Scholar]
  21. Trask B. C., Trask T. M., Broekelmann T., Mecham R. P. The microfibrillar proteins MAGP-1 and fibrillin-1 form a ternary complex with the chondroitin sulfate proteoglycan decorin. Mol Biol Cell. 2000 May;11(5):1499–1507. doi: 10.1091/mbc.11.5.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Trask T. M., Ritty T. M., Broekelmann T., Tisdale C., Mecham R. P. N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible first step in microfibril assembly. Biochem J. 1999 Jun 15;340(Pt 3):693–701. [PMC free article] [PubMed] [Google Scholar]
  23. Woods A., Oh E. S., Couchman J. R. Syndecan proteoglycans and cell adhesion. Matrix Biol. 1998 Nov;17(7):477–483. doi: 10.1016/s0945-053x(98)90095-6. [DOI] [PubMed] [Google Scholar]
  24. Wunsch A. M., Little C. D., Markwald R. R. Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Dev Biol. 1994 Oct;165(2):585–601. doi: 10.1006/dbio.1994.1278. [DOI] [PubMed] [Google Scholar]
  25. Zimmermann P., David G. The syndecans, tuners of transmembrane signaling. FASEB J. 1999;13 (Suppl):S91–S100. doi: 10.1096/fasebj.13.9001.s91. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES