Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 15;375(Pt 2):297–305. doi: 10.1042/BJ20030263

The conserved cis-Pro39 residue plays a crucial role in the proper positioning of the catalytic base Asp38 in ketosteroid isomerase from Comamonas testosteroni.

Gyu Hyun Nam 1, Sun-Shin Cha 1, Young Sung Yun 1, Yun Hee Oh 1, Bee Hak Hong 1, Heung-Soo Lee 1, Kwan Yong Choi 1
PMCID: PMC1223686  PMID: 12852789

Abstract

KSI (ketosteroid isomerase) from Comamonas testosteroni is a homodimeric enzyme that catalyses the allylic isomerization of Delta5-3-ketosteroids to their conjugated Delta4-isomers at a reaction rate equivalent to the diffusion-controlled limit. Based on the structural analysis of KSI at a high resolution, the conserved cis-Pro39 residue was proposed to be involved in the proper positioning of Asp38, a critical catalytic residue, since the residue was found not only to be structurally associated with Asp38, but also to confer a structural rigidity on the local active-site geometry consisting of Asp38, Pro39, Val40, Gly41 and Ser42 at the flexible loop between b-strands B1 and B2. In order to investigate the structural role of the conserved cis-Pro39 residue near the active site of KSI, Pro39 was replaced with alanine or glycine. The free energy of activation for the P39A and P39G mutants increased by 10.5 and 16.7 kJ/mol (2.5 and 4.0 kcal/mol) respectively, while DG(U)H2O (the free-energy change for unfolding in the absence of urea at 25.00+/-0.02 degrees C) decreased by 31.0 and 35.6 kJ/mol (7.4 and 8.5 kcal/mol) respectively, compared with the wild-type enzyme. The crystal structure of the P39A mutant in complex with d-equilenin [d-1,3,5(10),6,8-estrapentaen-3-ol-17-one], a reaction intermediate analogue, determined at 2.3 A (0.23 nm) resolution revealed that the P39A mutation significantly disrupted the proper orientations of both d-equilenin and Asp38, as well as the local active-site geometry near Asp38, which resulted in substantial decreases in the activity and stability of KSI. Upon binding 1-anilinonaphthalene-8-sulphonic acid, the fluorescence intensities of the P39A and P39G mutants were increased drastically, with maximum wavelengths blue-shifted upon binding, indicating that the mutations might alter the hydrophobic active site of KSI. Taken together, our results demonstrate that the conserved cis-Pro39 residue plays a crucial role in the proper positioning of the critical catalytic base Asp38 and in the structural integrity of the active site in KSI.

Full Text

The Full Text of this article is available as a PDF (204.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allocati N., Casalone E., Masulli M., Ceccarelli I., Carletti E., Parker M. W., Di Ilio C. Functional analysis of the evolutionarily conserved proline 53 residue in Proteus mirabilis glutathione transferase B1-1. FEBS Lett. 1999 Feb 26;445(2-3):347–350. doi: 10.1016/s0014-5793(99)00147-7. [DOI] [PubMed] [Google Scholar]
  2. Benson A. M., Jarabak R., Talalay P. The amino acid sequence of 5 -3-ketosteroid isomerase of Pseudomonas testosteroni. J Biol Chem. 1971 Dec 25;246(24):7514–7525. [PubMed] [Google Scholar]
  3. Birolo L., Malashkevich V. N., Capitani G., De Luca F., Moretta A., Jansonius J. N., Marino G. Functional and structural analysis of cis-proline mutants of Escherichia coli aspartate aminotransferase. Biochemistry. 1999 Jan 19;38(3):905–913. doi: 10.1021/bi981467d. [DOI] [PubMed] [Google Scholar]
  4. Brazin Kristine N., Mallis Robert J., Fulton D. Bruce, Andreotti Amy H. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc Natl Acad Sci U S A. 2002 Feb 5;99(4):1899–1904. doi: 10.1073/pnas.042529199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cho H. S., Choi G., Choi K. Y., Oh B. H. Crystal structure and enzyme mechanism of Delta 5-3-ketosteroid isomerase from Pseudomonas testosteroni. Biochemistry. 1998 Jun 9;37(23):8325–8330. doi: 10.1021/bi9801614. [DOI] [PubMed] [Google Scholar]
  6. Cho H. S., Ha N. C., Choi G., Kim H. J., Lee D., Oh K. S., Kim K. S., Lee W., Choi K. Y., Oh B. H. Crystal structure of delta(5)-3-ketosteroid isomerase from Pseudomonas testosteroni in complex with equilenin settles the correct hydrogen bonding scheme for transition state stabilization. J Biol Chem. 1999 Nov 12;274(46):32863–32868. doi: 10.1074/jbc.274.46.32863. [DOI] [PubMed] [Google Scholar]
  7. Choi G., Ha N. C., Kim M. S., Hong B. H., Oh B. H., Choi K. Y. Pseudoreversion of the catalytic activity of Y14F by the additional substitution(s) of tyrosine with phenylalanine in the hydrogen bond network of delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B. Biochemistry. 2001 Jun 12;40(23):6828–6835. doi: 10.1021/bi002767+. [DOI] [PubMed] [Google Scholar]
  8. Choi G., Ha N. C., Kim S. W., Kim D. H., Park S., Oh B. H., Choi K. Y. Asp-99 donates a hydrogen bond not to Tyr-14 but to the steroid directly in the catalytic mechanism of Delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B. Biochemistry. 2000 Feb 8;39(5):903–909. doi: 10.1021/bi991579k. [DOI] [PubMed] [Google Scholar]
  9. Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
  10. Grinberg A. V., Bernhardt R. Effect of replacing a conserved proline residue on the function and stability of bovine adrenodoxin. Protein Eng. 1998 Nov;11(11):1057–1064. doi: 10.1093/protein/11.11.1057. [DOI] [PubMed] [Google Scholar]
  11. Ha N. C., Choi G., Choi K. Y., Oh B. H. Structure and enzymology of Delta5-3-ketosteroid isomerase. Curr Opin Struct Biol. 2001 Dec;11(6):674–678. doi: 10.1016/s0959-440x(01)00268-8. [DOI] [PubMed] [Google Scholar]
  12. Hawkinson D. C., Eames T. C., Pollack R. M. Energetics of 3-oxo-delta 5-steroid isomerase: source of the catalytic power of the enzyme. Biochemistry. 1991 Nov 12;30(45):10849–10858. doi: 10.1021/bi00109a007. [DOI] [PubMed] [Google Scholar]
  13. Hawkinson D. C., Pollack R. M., Ambulos N. P., Jr Evaluation of the internal equilibrium constant for 3-oxo-delta 5-steroid isomerase using the D38E and D38N mutants: the energetic basis for catalysis. Biochemistry. 1994 Oct 11;33(40):12172–12183. doi: 10.1021/bi00206a021. [DOI] [PubMed] [Google Scholar]
  14. Iwata S., Lee J. W., Okada K., Lee J. K., Iwata M., Rasmussen B., Link T. A., Ramaswamy S., Jap B. K. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science. 1998 Jul 3;281(5373):64–71. doi: 10.1126/science.281.5373.64. [DOI] [PubMed] [Google Scholar]
  15. Jin L., Stec B., Kantrowitz E. R. A cis-proline to alanine mutant of E. coli aspartate transcarbamoylase: kinetic studies and three-dimensional crystal structures. Biochemistry. 2000 Jul 11;39(27):8058–8066. doi: 10.1021/bi000418+. [DOI] [PubMed] [Google Scholar]
  16. Jin L., Stec B., Lipscomb W. N., Kantrowitz E. R. Insights into the mechanisms of catalysis and heterotropic regulation of Escherichia coli aspartate transcarbamoylase based upon a structure of the enzyme complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate at 2.1 A. Proteins. 1999 Dec 1;37(4):729–742. [PubMed] [Google Scholar]
  17. Johnson J. D., El-Bayoumi M. A., Weber L. D., Tulinsky A. Interaction of alpha-chymotrypsin with the fluorescent probe 1-anilinonaphthalene-8-sulfonate in solution. Biochemistry. 1979 Apr 3;18(7):1292–1296. doi: 10.1021/bi00574a027. [DOI] [PubMed] [Google Scholar]
  18. Ke H. M., Lipscomb W. N., Cho Y. J., Honzatko R. B. Complex of N-phosphonacetyl-L-aspartate with aspartate carbamoyltransferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. J Mol Biol. 1988 Dec 5;204(3):725–747. doi: 10.1016/0022-2836(88)90365-8. [DOI] [PubMed] [Google Scholar]
  19. Kelley R. F., Richards F. M. Replacement of proline-76 with alanine eliminates the slowest kinetic phase in thioredoxin folding. Biochemistry. 1987 Oct 20;26(21):6765–6774. doi: 10.1021/bi00395a028. [DOI] [PubMed] [Google Scholar]
  20. Kim D. H., Jang D. S., Nam G. H., Choi G., Kim J. S., Ha N. C., Kim M. S., Oh B. H., Choi K. Y. Contribution of the hydrogen-bond network involving a tyrosine triad in the active site to the structure and function of a highly proficient ketosteroid isomerase from Pseudomonas putida biotype B. Biochemistry. 2000 Apr 25;39(16):4581–4589. doi: 10.1021/bi992119u. [DOI] [PubMed] [Google Scholar]
  21. Kim D. H., Jang D. S., Nam G. H., Choi K. Y. Folding mechanism of ketosteroid isomerase from Comamonas testosteroni. Biochemistry. 2001 Apr 24;40(16):5011–5017. doi: 10.1021/bi0019139. [DOI] [PubMed] [Google Scholar]
  22. Kim D. H., Nam G. H., Jang D. S., Choi G., Joo S., Kim J. S., Oh B. H., Choi K. Y. Roles of active site aromatic residues in catalysis by ketosteroid isomerase from Pseudomonas putida biotype B. Biochemistry. 1999 Oct 19;38(42):13810–13819. doi: 10.1021/bi991040m. [DOI] [PubMed] [Google Scholar]
  23. Kim S. W., Cha S. S., Cho H. S., Kim J. S., Ha N. C., Cho M. J., Joo S., Kim K. K., Choi K. Y., Oh B. H. High-resolution crystal structures of delta5-3-ketosteroid isomerase with and without a reaction intermediate analogue. Biochemistry. 1997 Nov 18;36(46):14030–14036. doi: 10.1021/bi971546+. [DOI] [PubMed] [Google Scholar]
  24. Kim S. W., Choi K. Y. Identification of active site residues by site-directed mutagenesis of delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B. J Bacteriol. 1995 May;177(9):2602–2605. doi: 10.1128/jb.177.9.2602-2605.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kim S. W., Joo S., Choi G., Cho H. S., Oh B. H., Choi K. Y. Mutational analysis of the three cysteines and active-site aspartic acid 103 of ketosteroid isomerase from Pseudomonas putida biotype B. J Bacteriol. 1997 Dec;179(24):7742–7747. doi: 10.1128/jb.179.24.7742-7747.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kim S. W., Kim C. Y., Benisek W. F., Choi K. Y. Cloning, nucleotide sequence, and overexpression of the gene coding for delta 5-3-ketosteroid isomerase from Pseudomonas putida biotype B. J Bacteriol. 1994 Nov;176(21):6672–6676. doi: 10.1128/jb.176.21.6672-6676.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Krause K. L., Volz K. W., Lipscomb W. N. 2.5 A structure of aspartate carbamoyltransferase complexed with the bisubstrate analog N-(phosphonacetyl)-L-aspartate. J Mol Biol. 1987 Feb 5;193(3):527–553. doi: 10.1016/0022-2836(87)90265-8. [DOI] [PubMed] [Google Scholar]
  28. Kuliopulos A., Talalay P., Mildvan A. S. Combined effects of two mutations of catalytic residues on the ketosteroid isomerase reaction. Biochemistry. 1990 Nov 6;29(44):10271–10280. doi: 10.1021/bi00496a017. [DOI] [PubMed] [Google Scholar]
  29. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  30. Linden K. G., Benisek W. F. The amino acid sequence of a delta 5-3-oxosteroid isomerase from Pseudomonas putida biotype B. J Biol Chem. 1986 May 15;261(14):6454–6460. [PubMed] [Google Scholar]
  31. MacArthur M. W., Thornton J. M. Influence of proline residues on protein conformation. J Mol Biol. 1991 Mar 20;218(2):397–412. doi: 10.1016/0022-2836(91)90721-h. [DOI] [PubMed] [Google Scholar]
  32. Maigret B., Perahia D., Pullman B. Molecular orbital calculations on the conformation of polypeptides and proteins. IV. The conformation of the prolyl and hydroxyprolyl residues. J Theor Biol. 1970 Nov;29(2):275–291. doi: 10.1016/0022-5193(70)90022-6. [DOI] [PubMed] [Google Scholar]
  33. Mallis Robert J., Brazin Kristine N., Fulton D. Bruce, Andreotti Amy H. Structural characterization of a proline-driven conformational switch within the Itk SH2 domain. Nat Struct Biol. 2002 Dec;9(12):900–905. doi: 10.1038/nsb864. [DOI] [PubMed] [Google Scholar]
  34. Massiah M. A., Abeygunawardana C., Gittis A. G., Mildvan A. S. Solution structure of Delta 5-3-ketosteroid isomerase complexed with the steroid 19-nortestosterone hemisuccinate. Biochemistry. 1998 Oct 20;37(42):14701–14712. doi: 10.1021/bi981447b. [DOI] [PubMed] [Google Scholar]
  35. Mayr L. M., Landt O., Hahn U., Schmid F. X. Stability and folding kinetics of ribonuclease T1 are strongly altered by the replacement of cis-proline 39 with alanine. J Mol Biol. 1993 Jun 5;231(3):897–912. doi: 10.1006/jmbi.1993.1336. [DOI] [PubMed] [Google Scholar]
  36. Mok Y. K., de Prat Gay G., Butler P. J., Bycroft M. Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain-16 E2 DNA-binding domain. Protein Sci. 1996 Feb;5(2):310–319. doi: 10.1002/pro.5560050215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nakano T., Antonino L. C., Fox R. O., Fink A. L. Effect of proline mutations on the stability and kinetics of folding of staphylococcal nuclease. Biochemistry. 1993 Mar 16;32(10):2534–2541. doi: 10.1021/bi00061a010. [DOI] [PubMed] [Google Scholar]
  38. Nam Gyu Hyun, Choi Kwan Yong. Association of human tumor necrosis factor-related apoptosis inducing ligand with membrane upon acidification. Eur J Biochem. 2002 Nov;269(21):5280–5287. doi: 10.1046/j.1432-1033.2002.03242.x. [DOI] [PubMed] [Google Scholar]
  39. Ogez J. R., Tivol W. F., Benisek W. F. A novel chemical modification of delta 5-3-ketosteroid isomerase occurring during its 3-oxo-4-estren-17 beta-yl acetate-dependent photoinactivation. J Biol Chem. 1977 Sep 10;252(17):6151–6155. [PubMed] [Google Scholar]
  40. Pollack R. M., Bantia S., Bounds P. L., Koffman B. M. pH dependence of the kinetic parameters for 3-oxo-delta 5-steroid isomerase. Substrate catalysis and inhibition by (3S)-spiro[5 alpha-androstane-3,2'-oxiran]-17-one. Biochemistry. 1986 Apr 22;25(8):1905–1911. doi: 10.1021/bi00356a011. [DOI] [PubMed] [Google Scholar]
  41. Schultz D. A., Baldwin R. L. Cis proline mutants of ribonuclease A. I. Thermal stability. Protein Sci. 1992 Jul;1(7):910–916. doi: 10.1002/pro.5560010709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schultz L. W., Hargraves S. R., Klink T. A., Raines R. T. Structure and stability of the P93G variant of ribonuclease A. Protein Sci. 1998 Jul;7(7):1620–1625. doi: 10.1002/pro.5560070716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stewart D. E., Sarkar A., Wampler J. E. Occurrence and role of cis peptide bonds in protein structures. J Mol Biol. 1990 Jul 5;214(1):253–260. doi: 10.1016/0022-2836(90)90159-J. [DOI] [PubMed] [Google Scholar]
  44. Wu Z. R., Ebrahimian S., Zawrotny M. E., Thornburg L. D., Perez-Alvarado G. C., Brothers P., Pollack R. M., Summers M. F. Solution structure of 3-oxo-delta5-steroid isomerase. Science. 1997 Apr 18;276(5311):415–418. doi: 10.1126/science.276.5311.415. [DOI] [PubMed] [Google Scholar]
  45. Xue L. A., Kuliopulos A., Mildvan A. S., Talalay P. Catalytic mechanism of an active-site mutant (D38N) of delta 5-3-ketosteroid isomerase. Direct spectroscopic evidence for dienol intermediates. Biochemistry. 1991 May 21;30(20):4991–4997. doi: 10.1021/bi00234a022. [DOI] [PubMed] [Google Scholar]
  46. Yun Young Sung, Lee Tae-Hee, Nam Gyu Hyun, Jang Do Soo, Shin Sejeong, Oh Byung-Ha, Choi Kwan Yong. Origin of the different pH activity profile in two homologous ketosteroid isomerases. J Biol Chem. 2003 May 6;278(30):28229–28236. doi: 10.1074/jbc.M302166200. [DOI] [PubMed] [Google Scholar]
  47. Yutani K., Hayashi S., Sugisaki Y., Ogasahara K. Role of conserved proline residues in stabilizing tryptophan synthase alpha subunit: analysis by mutants with alanine or glycine. Proteins. 1991;9(2):90–98. doi: 10.1002/prot.340090203. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES