Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 15;375(Pt 2):465–470. doi: 10.1042/BJ20030382

Inhibition of human ornithine decarboxylase activity by enantiomers of difluoromethylornithine.

Ning Qu 1, Natalia A Ignatenko 1, Phillip Yamauchi 1, David E Stringer 1, Corey Levenson 1, Patrick Shannon 1, Scott Perrin 1, Eugene W Gerner 1
PMCID: PMC1223689  PMID: 12859253

Abstract

Racemic difluoromethylornithine (D/L-DFMO) is an inhibitor of ODC (ornithine decarboxylase), the first enzyme in eukaryotic polyamine biosynthesis. D/L-DFMO is an effective anti-parasitic agent and inhibitor of mammalian cell growth and development. Purified human ODC-catalysed ornithine decarboxylation is highly stereospecific. However, both DFMO enantiomers suppressed ODC activity in a time- and concentration-dependent manner. ODC activity failed to recover after treatment with either L- or D-DFMO and dialysis to remove free inhibitor. The inhibitor dissociation constant (K(D)) values for the formation of enzyme-inhibitor complexes were 28.3+/-3.4, 1.3+/-0.3 and 2.2+/-0.4 microM respectively for D-, L- and D/L-DFMO. The differences in these K(D) values were statistically significant ( P <0.05). The inhibitor inactivation constants (K(inact)) for the irreversible step were 0.25+/-0.03, 0.15+/-0.03 and 0.15+/-0.03 min(-1) respectively for D-, L- and D/L-DFMO. These latter values were not statistically significantly different ( P >0.1). D-DFMO was a more potent inhibitor (IC50 approximately 7.5 microM) when compared with D-ornithine (IC50 approximately 1.5 mM) of ODC-catalysed L-ornithine decarboxylation. Treatment of human colon tumour-derived HCT116 cells with either L- or D-DFMO decreased the cellular polyamine contents in a concentration-dependent manner. These results show that both enantiomers of DFMO irreversibly inactivate ODC and suggest that this inactivation occurs by a common mechanism. Both enantiomers form enzyme-inhibitor complexes with ODC, but the probability of formation of these complexes is 20 times greater for L-DFMO when compared with D-DFMO. The rate of the irreversible reaction in ODC inactivation is similar for the L- and D-enantiomer. This unexpected similarity between DFMO enantiomers, in contrast with the high degree of stereospecificity of the substrate ornithine, appears to be due to the alpha-substituent of the inhibitor. The D-enantiomer may have advantages, such as decreased normal tissue toxicity, over L- or D/L-DFMO in some clinical applications.

Full Text

The Full Text of this article is available as a PDF (142.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts D. S., Dorr R. T., Einspahr J. G., Aickin M., Saboda K., Xu M. J., Peng Y. M., Goldman R., Foote J. A., Warneke J. A. Chemoprevention of human actinic keratoses by topical 2-(difluoromethyl)-dl-ornithine. Cancer Epidemiol Biomarkers Prev. 2000 Dec;9(12):1281–1286. [PubMed] [Google Scholar]
  2. Bacchi C. J., Nathan H. C., Hutner S. H., McCann P. P., Sjoerdsma A. Polyamine metabolism: a potential therapeutic target in trypanosomes. Science. 1980 Oct 17;210(4467):332–334. doi: 10.1126/science.6775372. [DOI] [PubMed] [Google Scholar]
  3. Balasundaram D., Tabor C. W., Tabor H. Spermidine or spermine is essential for the aerobic growth of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5872–5876. doi: 10.1073/pnas.88.13.5872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bello-Fernandez C., Packham G., Cleveland J. L. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7804–7808. doi: 10.1073/pnas.90.16.7804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coleman C. S., Stanley B. A., Pegg A. E. Effect of mutations at active site residues on the activity of ornithine decarboxylase and its inhibition by active site-directed irreversible inhibitors. J Biol Chem. 1993 Nov 25;268(33):24572–24579. [PubMed] [Google Scholar]
  6. Doyle K. J., McLaren C. E., Shanks J. E., Galus C. M., Meyskens F. L. Effects of difluoromethylornithine chemoprevention on audiometry thresholds and otoacoustic emissions. Arch Otolaryngol Head Neck Surg. 2001 May;127(5):553–558. doi: 10.1001/archotol.127.5.553. [DOI] [PubMed] [Google Scholar]
  7. Einspahr Janine G., Nelson Mark A., Saboda Kathylynn, Warneke James, Bowden G. Timothy, Alberts David S. Modulation of biologic endpoints by topical difluoromethylornithine (DFMO), in subjects at high-risk for nonmelanoma skin cancer. Clin Cancer Res. 2002 Jan;8(1):149–155. [PubMed] [Google Scholar]
  8. Erdman S. H., Ignatenko N. A., Powell M. B., Blohm-Mangone K. A., Holubec H., Guillén-Rodriguez J. M., Gerner E. W. APC-dependent changes in expression of genes influencing polyamine metabolism, and consequences for gastrointestinal carcinogenesis, in the Min mouse. Carcinogenesis. 1999 Sep;20(9):1709–1713. doi: 10.1093/carcin/20.9.1709. [DOI] [PubMed] [Google Scholar]
  9. Fultz Kimberly E., Gerner Eugene W. APC-dependent regulation of ornithine decarboxylase in human colon tumor cells. Mol Carcinog. 2002 May;34(1):10–18. doi: 10.1002/mc.10043. [DOI] [PubMed] [Google Scholar]
  10. Grishin N. V., Osterman A. L., Brooks H. B., Phillips M. A., Goldsmith E. J. X-ray structure of ornithine decarboxylase from Trypanosoma brucei: the native structure and the structure in complex with alpha-difluoromethylornithine. Biochemistry. 1999 Nov 16;38(46):15174–15184. doi: 10.1021/bi9915115. [DOI] [PubMed] [Google Scholar]
  11. He T. C., Sparks A. B., Rago C., Hermeking H., Zawel L., da Costa L. T., Morin P. J., Vogelstein B., Kinzler K. W. Identification of c-MYC as a target of the APC pathway. Science. 1998 Sep 4;281(5382):1509–1512. doi: 10.1126/science.281.5382.1509. [DOI] [PubMed] [Google Scholar]
  12. Hickok N. J., Seppänen P. J., Gunsalus G. L., Jänne O. A. Complete amino acid sequence of human ornithine decarboxylase deduced from complementary DNA. DNA. 1987 Jun;6(3):179–187. doi: 10.1089/dna.1987.6.179. [DOI] [PubMed] [Google Scholar]
  13. KITZ R., WILSON I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem. 1962 Oct;237:3245–3249. [PubMed] [Google Scholar]
  14. Kuzoe F. A. Current situation of African trypanosomiasis. Acta Trop. 1993 Sep;54(3-4):153–162. doi: 10.1016/0001-706x(93)90089-t. [DOI] [PubMed] [Google Scholar]
  15. McWilliams M. L., Chen G. D., Fechter L. D. Characterization of the ototoxicity of difluoromethylornithine and its enantiomers. Toxicol Sci. 2000 Jul;56(1):124–132. doi: 10.1093/toxsci/56.1.124. [DOI] [PubMed] [Google Scholar]
  16. Meyskens F. L., Jr, Emerson S. S., Pelot D., Meshkinpour H., Shassetz L. R., Einspahr J., Alberts D. S., Gerner E. W. Dose de-escalation chemoprevention trial of alpha-difluoromethylornithine in patients with colon polyps. J Natl Cancer Inst. 1994 Aug 3;86(15):1122–1130. doi: 10.1093/jnci/86.15.1122. [DOI] [PubMed] [Google Scholar]
  17. Meyskens F. L., Jr, Gerner E. W. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res. 1999 May;5(5):945–951. [PubMed] [Google Scholar]
  18. Pendeville H., Carpino N., Marine J. C., Takahashi Y., Muller M., Martial J. A., Cleveland J. L. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol. 2001 Oct;21(19):6549–6558. doi: 10.1128/MCB.21.19.6549-6558.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peña A., Reddy C. D., Wu S., Hickok N. J., Reddy E. P., Yumet G., Soprano D. R., Soprano K. J. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex. J Biol Chem. 1993 Dec 25;268(36):27277–27285. [PubMed] [Google Scholar]
  20. Poulin R., Lu L., Ackermann B., Bey P., Pegg A. E. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem. 1992 Jan 5;267(1):150–158. [PubMed] [Google Scholar]
  21. Seely J. E., Pegg A. E. Changes in mouse kidney ornithine decarboxylase activity are brought about by changes in the amount of enzyme protein as measured by radioimmunoassay. J Biol Chem. 1983 Feb 25;258(4):2496–2500. [PubMed] [Google Scholar]
  22. Seiler N., Knödgen B. High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr. 1980 Dec 12;221(2):227–235. doi: 10.1016/s0378-4347(00)84307-8. [DOI] [PubMed] [Google Scholar]
  23. Shapiro J., Lui H. Vaniqa--eflornithine 13.9% cream. Skin Therapy Lett. 2001 Apr;6(7):1-3, 5. [PubMed] [Google Scholar]
  24. Smith D., Davies S., Nelson M., Youle M., Gleeson J., Gazzard B. Pneumocystis carinii pneumonia treated with eflornithine in AIDS patients resistant to conventional therapy. AIDS. 1990 Oct;4(10):1019–1021. doi: 10.1097/00002030-199010000-00012. [DOI] [PubMed] [Google Scholar]
  25. Tabor H., Hafner E. W., Tabor C. W. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. J Bacteriol. 1980 Dec;144(3):952–956. doi: 10.1128/jb.144.3.952-956.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tome M. E., Fiser S. M., Gerner E. W. Consequences of aberrant ornithine decarboxylase regulation in rat hepatoma cells. J Cell Physiol. 1994 Feb;158(2):237–244. doi: 10.1002/jcp.1041580205. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES