Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 15;375(Pt 2):441–447. doi: 10.1042/BJ20030535

Functional characterization and regulation of the taurine transporter and cysteine dioxygenase in human hepatoblastoma HepG2 cells.

Hideo Satsu 1, Eriko Terasawa 1, Yu Hosokawa 1, Makoto Shimizu 1
PMCID: PMC1223695  PMID: 12871209

Abstract

We investigated the characterization and the regulation of TAUT (taurine transporter) and CDO (cysteine dioxygenase), one of the key enzymes of taurine biosynthesis, in human hepatoblastoma HepG2 cells. The activity of TAUT in the HepG2 cells was evaluated by means of a sodium- and chloride-dependent high-affinity transport system, the characteristics of which were similar to those of the beta amino-acid-specific taurine transport system described previously for various tissues [Uchida, Kwon, Yamauchi, Preston, Marumo and Handler (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 8230-8234; Ramamoorthy, Leibach, Mahesh, Han, Yang-Feng, Blakely and Ganapathy (1994) Biochem. J. 300, 893-900; and Satsu, Watanabe, Arai and Shimizu (1997) J. Biochem. (Tokyo) 121, 1082-1087]. By culturing in a hypertonic medium, the intracellular taurine content of HepG2 cells was markedly increased. Under hypertonic conditions, the activity of TAUT was up-regulated, and the results of the kinetic analysis suggested that this up-regulation was associated with an increase in the amount of TAUT. The expression level of TAUT mRNA was markedly higher than that of the control cells. The expression level of CDO mRNA was also up-regulated under the hypertonic conditions. Culturing the cells in a taurine-rich medium resulted in both the activity of TAUT and the expression level of TAUT mRNA being down-regulated in HepG2 cells. On the other hand, the expression level of CDO mRNA was not affected under a taurine-rich condition. The present results show that both TAUT and CDO were co-operatively regulated in response to hypertonicity, but did not co-operatively respond to the change in extracellular taurine concentration. Generally, the TAUT and taurine biosynthetic enzymes have independent regulatory systems, but under certain conditions, they could be regulated in harmony with each other.

Full Text

The Full Text of this article is available as a PDF (173.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagley P. J., Stipanuk M. H. Rats fed a low protein diet supplemented with sulfur amino acids have increased cysteine dioxygenase activity and increased taurine production in hepatocytes. J Nutr. 1995 Apr;125(4):933–940. doi: 10.1093/jn/125.4.933. [DOI] [PubMed] [Google Scholar]
  2. Bitoun M., Levillain O., Tappaz M. Gene expression of the taurine transporter and taurine biosynthetic enzymes in rat kidney after antidiuresis and salt loading. Pflugers Arch. 2001 Apr;442(1):87–95. doi: 10.1007/s004240000506. [DOI] [PubMed] [Google Scholar]
  3. Bitoun M., Tappaz M. Gene expression of taurine transporter and taurine biosynthetic enzymes in brain of rats with acute or chronic hyperosmotic plasma. A comparative study with gene expression of myo-inositol transporter, betaine transporter and sorbitol biosynthetic enzyme. Brain Res Mol Brain Res. 2000 Apr 14;77(1):10–18. doi: 10.1016/s0169-328x(00)00034-6. [DOI] [PubMed] [Google Scholar]
  4. Bitoun M., Tappaz M. Gene expression of the transporters and biosynthetic enzymes of the osmolytes in astrocyte primary cultures exposed to hyperosmotic conditions. Glia. 2000 Nov;32(2):165–176. [PubMed] [Google Scholar]
  5. Burg M. B. Molecular basis of osmotic regulation. Am J Physiol. 1995 Jun;268(6 Pt 2):F983–F996. doi: 10.1152/ajprenal.1995.268.6.F983. [DOI] [PubMed] [Google Scholar]
  6. Han X., Budreau A. M., Chesney R. W. Identification of promoter elements involved in adaptive regulation of the taurine transporter gene: role of cytosolic Ca2+ signaling. Adv Exp Med Biol. 2000;483:535–544. doi: 10.1007/0-306-46838-7_58. [DOI] [PubMed] [Google Scholar]
  7. Hosokawa Y., Niizeki S., Tojo H., Sato I., Yamaguchi K. Hepatic cysteine dioxygenase activity and sulfur amino acid metabolism in rats: possible indicators in the evaluation of protein quality. J Nutr. 1988 Apr;118(4):456–461. doi: 10.1093/jn/118.4.456. [DOI] [PubMed] [Google Scholar]
  8. Huxtable R. J. Physiological actions of taurine. Physiol Rev. 1992 Jan;72(1):101–163. doi: 10.1152/physrev.1992.72.1.101. [DOI] [PubMed] [Google Scholar]
  9. Häussinger D. The role of cellular hydration in the regulation of cell function. Biochem J. 1996 Feb 1;313(Pt 3):697–710. doi: 10.1042/bj3130697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ishizuka K., Kanayama A., Satsu H., Miyamoto Y., Furihata K., Shimizu M. Identification of a taurine transport inhibitory substance in sesame seeds. Biosci Biotechnol Biochem. 2000 Jun;64(6):1166–1172. doi: 10.1271/bbb.64.1166. [DOI] [PubMed] [Google Scholar]
  11. Ishizuka Koji, Miyamoto Yusei, Satsu Hideo, Sato Ryuichiro, Shimizu Makoto. Characteristics of lysophosphatidylcholine in its inhibition of taurine uptake by human intestinal Caco-2 cells. Biosci Biotechnol Biochem. 2002 Apr;66(4):730–736. doi: 10.1271/bbb.66.730. [DOI] [PubMed] [Google Scholar]
  12. Jayanthi L. D., Ramamoorthy S., Mahesh V. B., Leibach F. H., Ganapathy V. Substrate-specific regulation of the taurine transporter in human placental choriocarcinoma cells (JAR). Biochim Biophys Acta. 1995 May 4;1235(2):351–360. doi: 10.1016/0005-2736(95)80024-a. [DOI] [PubMed] [Google Scholar]
  13. Jhiang S. M., Fithian L., Smanik P., McGill J., Tong Q., Mazzaferri E. L. Cloning of the human taurine transporter and characterization of taurine uptake in thyroid cells. FEBS Lett. 1993 Mar 1;318(2):139–144. doi: 10.1016/0014-5793(93)80008-i. [DOI] [PubMed] [Google Scholar]
  14. Jones D. P., Miller L. A., Dowling C., Chesney R. W. Regulation of taurine transporter activity in LLC-PK1 cells: role of protein synthesis and protein kinase C activation. J Am Soc Nephrol. 1991 Nov;2(5):1021–1029. doi: 10.1681/ASN.V251021. [DOI] [PubMed] [Google Scholar]
  15. Kim Sang K., Kim Young C. Attenuation of bacterial lipopolysaccharide-induced hepatotoxicity by betaine or taurine in rats. Food Chem Toxicol. 2002 Apr;40(4):545–549. doi: 10.1016/s0278-6915(01)00102-8. [DOI] [PubMed] [Google Scholar]
  16. Kohashi N., Yamaguchi K., Hosokawa Y., Kori Y., Fujii O., Ueda I. Dietary control of cysteine dioxygenase in rat liver. J Biochem. 1978 Jul;84(1):159–168. doi: 10.1093/oxfordjournals.jbchem.a132104. [DOI] [PubMed] [Google Scholar]
  17. Kwon H. M., Handler J. S. Cell volume regulated transporters of compatible osmolytes. Curr Opin Cell Biol. 1995 Aug;7(4):465–471. doi: 10.1016/0955-0674(95)80002-6. [DOI] [PubMed] [Google Scholar]
  18. Liu Q. R., López-Corcuera B., Nelson H., Mandiyan S., Nelson N. Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12145–12149. doi: 10.1073/pnas.89.24.12145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miyakawa H., Woo S. K., Chen C. P., Dahl S. C., Handler J. S., Kwon H. M. Cis- and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity. Am J Physiol. 1998 Apr;274(4 Pt 2):F753–F761. doi: 10.1152/ajprenal.1998.274.4.F753. [DOI] [PubMed] [Google Scholar]
  20. Miyakawa H., Woo S. K., Dahl S. C., Handler J. S., Kwon H. M. Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2538–2542. doi: 10.1073/pnas.96.5.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyamoto Y., Tiruppathi C., Ganapathy V., Leibach F. H. Active transport of taurine in rabbit jejunal brush-border membrane vesicles. Am J Physiol. 1989 Jul;257(1 Pt 1):G65–G72. doi: 10.1152/ajpgi.1989.257.1.G65. [DOI] [PubMed] [Google Scholar]
  22. Mochizuki Tetsunosuke, Satsu Hideo, Shimizu Makoto. Tumor necrosis factor alpha stimulates taurine uptake and transporter gene expression in human intestinal Caco-2 cells. FEBS Lett. 2002 Apr 24;517(1-3):92–96. doi: 10.1016/s0014-5793(02)02584-x. [DOI] [PubMed] [Google Scholar]
  23. Morimura H., Shimada S., Otori Y., Saishin Y., Yamauchi A., Minami Y., Inoue K., Ishimoto I., Tano Y., Tohyama M. The differential osmoregulation and localization of taurine transporter mRNA and Na+/myo-inositol cotransporter mRNA in rat eyes. Brain Res Mol Brain Res. 1997 Mar;44(2):245–252. doi: 10.1016/s0169-328x(96)00226-4. [DOI] [PubMed] [Google Scholar]
  24. Ramamoorthy S., Leibach F. H., Mahesh V. B., Han H., Yang-Feng T., Blakely R. D., Ganapathy V. Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta. Biochem J. 1994 Jun 15;300(Pt 3):893–900. doi: 10.1042/bj3000893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Satsu H., Miyamoto Y., Shimizu M. Hypertonicity stimulates taurine uptake and transporter gene expression in Caco-2 cells. Biochim Biophys Acta. 1999 Jun 9;1419(1):89–96. doi: 10.1016/s0005-2736(99)00058-9. [DOI] [PubMed] [Google Scholar]
  26. Satsu H., Watanabe H., Arai S., Shimizu M. Characterization and regulation of taurine transport in Caco-2, human intestinal cells. J Biochem. 1997 Jun;121(6):1082–1087. doi: 10.1093/oxfordjournals.jbchem.a021698. [DOI] [PubMed] [Google Scholar]
  27. Smith K. E., Borden L. A., Wang C. H., Hartig P. R., Branchek T. A., Weinshank R. L. Cloning and expression of a high affinity taurine transporter from rat brain. Mol Pharmacol. 1992 Oct;42(4):563–569. [PubMed] [Google Scholar]
  28. Sturman J. A. Taurine in development. Physiol Rev. 1993 Jan;73(1):119–147. doi: 10.1152/physrev.1993.73.1.119. [DOI] [PubMed] [Google Scholar]
  29. Timbrell J. A., Seabra V., Waterfield C. J. The in vivo and in vitro protective properties of taurine. Gen Pharmacol. 1995 May;26(3):453–462. doi: 10.1016/0306-3623(94)00203-y. [DOI] [PubMed] [Google Scholar]
  30. Tsuboyama-Kasaoka N., Hosokawa Y., Kodama H., Matsumoto A., Oka J., Totani M. Human cysteine dioxygenase gene: structural organization, tissue-specific expression and downregulation by phorbol 12-myristate 13-acetate. Biosci Biotechnol Biochem. 1999 Jun;63(6):1017–1024. doi: 10.1271/bbb.63.1017. [DOI] [PubMed] [Google Scholar]
  31. Tsuboyama N., Hosokawa Y., Totani M., Oka J., Matsumoto A., Koide T., Kodama H. Structural organization and tissue-specific expression of the gene encoding rat cysteine dioxygenase. Gene. 1996 Nov 28;181(1-2):161–165. doi: 10.1016/s0378-1119(96)00496-9. [DOI] [PubMed] [Google Scholar]
  32. Uchida S., Kwon H. M., Yamauchi A., Preston A. S., Marumo F., Handler J. S. Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(-)-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8230–8234. doi: 10.1073/pnas.89.17.8230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Uchida S., Nakanishi T., Kwon H. M., Preston A. S., Handler J. S. Taurine behaves as an osmolyte in Madin-Darby canine kidney cells. Protection by polarized, regulated transport of taurine. J Clin Invest. 1991 Aug;88(2):656–662. doi: 10.1172/JCI115350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Warskulat U., Wettstein M., Häussinger D. Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver. Biochem J. 1997 Feb 1;321(Pt 3):683–690. doi: 10.1042/bj3210683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wright C. E., Tallan H. H., Lin Y. Y., Gaull G. E. Taurine: biological update. Annu Rev Biochem. 1986;55:427–453. doi: 10.1146/annurev.bi.55.070186.002235. [DOI] [PubMed] [Google Scholar]
  36. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES