Abstract
ACC-alpha (acetyl-CoA carboxylase-alpha), a key regulator of fatty-acid metabolism, is encoded by mRNAs transcribed from three promoters, PI, PII and PIII, in the ovine genome. Enhanced expression of transcripts encoded by PIII in mammary gland during lactation is associated with alterations in chromatin structure that result in the detection of two DNase I hypersensitive sites, upstream of the start site. The most proximal site, located between -190 and -10, is characterized by the presence of an inverted-CCAAT box, C2 at -167, and E-boxes, E1 and E2, at -151 and -46. Deletion of these motifs, which bind nuclear factor-Y and upstream stimulatory factors respectively in gel-shift assays, attenuates the activity of luciferase reporter constructs in transfected cells. Chromatin immunoprecipitation demonstrated that these transcription factors were associated with PIII in vivo in both lactating and non-lactating mammary tissues. The basic helix-loop-helix-leucine zipper transcription factor, SREBP-1 (sterol-regulated-element-binding protein-1), transactivated PIII reporter constructs in transfected HC11 mammary cells, and this was dependent on the presence of E1, but not on C2 or E2. SREBP-1 was only associated with PIII in chromatin from lactating animals, which was coincident with a 4-fold increase in the precursor (125 kDa) form of SREBP-1 in microsomes and the appearance of the mature form (68 kDa) in the nucleus. SREBP-1 motifs are also present in the proximal region of PII, which is also induced in lactation. This indicates that SREBP-1 is a major developmental regulator of the programme of lipid synthesis de novo in the lactating mammary gland.
Full Text
The Full Text of this article is available as a PDF (341.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abu-Elheiga L., Almarza-Ortega D. B., Baldini A., Wakil S. J. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem. 1997 Apr 18;272(16):10669–10677. doi: 10.1074/jbc.272.16.10669. [DOI] [PubMed] [Google Scholar]
- Abu-Elheiga L., Brinkley W. R., Zhong L., Chirala S. S., Woldegiorgis G., Wakil S. J. The subcellular localization of acetyl-CoA carboxylase 2. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1444–1449. doi: 10.1073/pnas.97.4.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amemiya-Kudo Michiyo, Shimano Hitoshi, Hasty Alyssa H., Yahagi Naoya, Yoshikawa Tomohiro, Matsuzaka Takashi, Okazaki Hiroaki, Tamura Yoshiaki, Iizuka Yoko, Ohashi Ken. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res. 2002 Aug;43(8):1220–1235. [PubMed] [Google Scholar]
- Andreolas Chrysovalantis, da Silva Xavier Gabriela, Diraison Frederique, Zhao Chao, Varadi Aniko, Lopez-Casillas Fernando, Ferré Pascal, Foufelle Fabienne, Rutter Guy A. Stimulation of acetyl-CoA carboxylase gene expression by glucose requires insulin release and sterol regulatory element binding protein 1c in pancreatic MIN6 beta-cells. Diabetes. 2002 Aug;51(8):2536–2545. doi: 10.2337/diabetes.51.8.2536. [DOI] [PubMed] [Google Scholar]
- Ball R. K., Friis R. R., Schoenenberger C. A., Doppler W., Groner B. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 1988 Jul;7(7):2089–2095. doi: 10.1002/j.1460-2075.1988.tb03048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barber M. C., Travers M. T. Cloning and characterisation of multiple acetyl-CoA carboxylase transcripts in ovine adipose tissue. Gene. 1995 Mar 10;154(2):271–275. doi: 10.1016/0378-1119(94)00871-o. [DOI] [PubMed] [Google Scholar]
- Barber M. C., Travers M. T. Elucidation of a promoter activity that directs the expression of acetyl-CoA carboxylase alpha with an alternative N-terminus in a tissue-restricted fashion. Biochem J. 1998 Jul 1;333(Pt 1):17–25. doi: 10.1042/bj3330017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bendall A. J., Molloy P. L. Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members. Nucleic Acids Res. 1994 Jul 25;22(14):2801–2810. doi: 10.1093/nar/22.14.2801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. K., Osborne T. F. Nutrient regulation of gene expression by the sterol regulatory element binding proteins: increased recruitment of gene-specific coregulatory factors and selective hyperacetylation of histone H3 in vivo. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6340–6344. doi: 10.1073/pnas.97.12.6340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boone A. N., Rodrigues B., Brownsey R. W. Multiple-site phosphorylation of the 280 kDa isoform of acetyl-CoA carboxylase in rat cardiac myocytes: evidence that cAMP-dependent protein kinase mediates effects of beta-adrenergic stimulation. Biochem J. 1999 Jul 15;341(Pt 2):347–354. [PMC free article] [PubMed] [Google Scholar]
- Davies S. P., Sim A. T., Hardie D. G. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem. 1990 Jan 12;187(1):183–190. doi: 10.1111/j.1432-1033.1990.tb15293.x. [DOI] [PubMed] [Google Scholar]
- Dyck J. R., Kudo N., Barr A. J., Davies S. P., Hardie D. G., Lopaschuk G. D. Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5'-AMP activated protein kinase. Eur J Biochem. 1999 May;262(1):184–190. doi: 10.1046/j.1432-1327.1999.00371.x. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Ferré-D'Amaré A. R., Pognonec P., Roeder R. G., Burley S. K. Structure and function of the b/HLH/Z domain of USF. EMBO J. 1994 Jan 1;13(1):180–189. doi: 10.1002/j.1460-2075.1994.tb06247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foufelle Fabienne, Ferré Pascal. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J. 2002 Sep 1;366(Pt 2):377–391. doi: 10.1042/BJ20020430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grigor M. R., Geursen A., Sneyd M. J., Warren S. M. Regulation of lipogenic capacity in lactating rats. Biochem J. 1982 Dec 15;208(3):611–618. doi: 10.1042/bj2080611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ha J., Daniel S., Broyles S. S., Kim K. H. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem. 1994 Sep 2;269(35):22162–22168. [PubMed] [Google Scholar]
- Ha J., Lee J. K., Kim K. S., Witters L. A., Kim K. H. Cloning of human acetyl-CoA carboxylase-beta and its unique features. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11466–11470. doi: 10.1073/pnas.93.21.11466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
- Jackson S. M., Ericsson J., Mantovani R., Edwards P. A. Synergistic activation of transcription by nuclear factor Y and sterol regulatory element binding protein. J Lipid Res. 1998 Apr;39(4):767–776. [PubMed] [Google Scholar]
- Jump D. B., Thelen A. P., Mater M. K. Functional interaction between sterol regulatory element-binding protein-1c, nuclear factor Y, and 3,5,3'-triiodothyronine nuclear receptors. J Biol Chem. 2001 Jul 11;276(37):34419–34427. doi: 10.1074/jbc.M105471200. [DOI] [PubMed] [Google Scholar]
- Kim I. S., Sinha S., de Crombrugghe B., Maity S. N. Determination of functional domains in the C subunit of the CCAAT-binding factor (CBF) necessary for formation of a CBF-DNA complex: CBF-B interacts simultaneously with both the CBF-A and CBF-C subunits to form a heterotrimeric CBF molecule. Mol Cell Biol. 1996 Aug;16(8):4003–4013. doi: 10.1128/mcb.16.8.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim K. H., Tae H. J. Pattern and regulation of acetyl-CoA carboxylase gene expression. J Nutr. 1994 Aug;124(8 Suppl):1273S–1283S. doi: 10.1093/jn/124.suppl_8.1273S. [DOI] [PubMed] [Google Scholar]
- Kim T. S., Leahy P., Freake H. C. Promoter usage determines tissue specific responsiveness of the rat acetyl-CoA carboxylase gene. Biochem Biophys Res Commun. 1996 Aug 14;225(2):647–653. doi: 10.1006/bbrc.1996.1224. [DOI] [PubMed] [Google Scholar]
- Krebs J. E., Peterson C. L. Understanding "active" chromatin: a historical perspective of chromatin remodeling. Crit Rev Eukaryot Gene Expr. 2000;10(1):1–12. [PubMed] [Google Scholar]
- Luo X. C., Park K., Lopez-Casillas F., Kim K. H. Structural features of the acetyl-CoA carboxylase gene: mechanisms for the generation of mRNAs with 5' end heterogeneity. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4042–4046. doi: 10.1073/pnas.86.11.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- López-Casillas F., Bai D. H., Luo X. C., Kong I. S., Hermodson M. A., Kim K. H. Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784–5788. doi: 10.1073/pnas.85.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- López-Casillas F., Ponce-Castañeda M. V., Kim K. H. In vivo regulation of the activity of the two promoters of the rat acetyl coenzyme-A carboxylase gene. Endocrinology. 1991 Aug;129(2):1049–1058. doi: 10.1210/endo-129-2-1049. [DOI] [PubMed] [Google Scholar]
- Magaña M. M., Lin S. S., Dooley K. A., Osborne T. F. Sterol regulation of acetyl coenzyme A carboxylase promoter requires two interdependent binding sites for sterol regulatory element binding proteins. J Lipid Res. 1997 Aug;38(8):1630–1638. [PubMed] [Google Scholar]
- Magaña M. M., Osborne T. F. Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem. 1996 Dec 20;271(51):32689–32694. doi: 10.1074/jbc.271.51.32689. [DOI] [PubMed] [Google Scholar]
- Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 1999 Oct 18;239(1):15–27. doi: 10.1016/s0378-1119(99)00368-6. [DOI] [PubMed] [Google Scholar]
- Mao J., Molenaar A. J., Wheeler T. T., Seyfert H. M. STAT5 binding contributes to lactational stimulation of promoter III expressing the bovine acetyl-CoA carboxylase alpha-encoding gene in the mammary gland. J Mol Endocrinol. 2002 Aug;29(1):73–88. doi: 10.1677/jme.0.0290073. [DOI] [PubMed] [Google Scholar]
- Mao Jianqiang, Seyfert Hans-Martin. Promoter II of the bovine acetyl-coenzyme A carboxylase-alpha-encoding gene is widely expressed and strongly active in different cells. Biochim Biophys Acta. 2002 Jul 19;1576(3):324–329. doi: 10.1016/s0167-4781(02)00369-x. [DOI] [PubMed] [Google Scholar]
- McKay Renée M., McKay James P., Avery Leon, Graff Jonathan M. C elegans: a model for exploring the genetics of fat storage. Dev Cell. 2003 Jan;4(1):131–142. doi: 10.1016/s1534-5807(02)00411-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michell B. J., Stapleton D., Mitchelhill K. I., House C. M., Katsis F., Witters L. A., Kemp B. E. Isoform-specific purification and substrate specificity of the 5'-AMP-activated protein kinase. J Biol Chem. 1996 Nov 8;271(45):28445–28450. doi: 10.1074/jbc.271.45.28445. [DOI] [PubMed] [Google Scholar]
- Millot B., Fontaine M. L., Thepot D., Devinoy E. A distal region, hypersensitive to DNase I, plays a key role in regulating rabbit whey acidic protein gene expression. Biochem J. 2001 Nov 1;359(Pt 3):557–565. doi: 10.1042/0264-6021:3590557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moon Y. A., Lee J. J., Park S. W., Ahn Y. H., Kim K. S. The roles of sterol regulatory element-binding proteins in the transactivation of the rat ATP citrate-lyase promoter. J Biol Chem. 2000 Sep 29;275(39):30280–30286. doi: 10.1074/jbc.M001066200. [DOI] [PubMed] [Google Scholar]
- Roder K., Wolf S. S., Beck K. F., Schweizer M. Cooperative binding of NF-Y and Sp1 at the DNase I-hypersensitive site, fatty acid synthase insulin-responsive element 1, located at -500 in the rat fatty acid synthase promoter. J Biol Chem. 1997 Aug 22;272(34):21616–21624. doi: 10.1074/jbc.272.34.21616. [DOI] [PubMed] [Google Scholar]
- Roder K., Wolf S. S., Beck K. F., Sickinger S., Schweizer M. NF-Y binds to the inverted CCAAT box, an essential element for cAMP-dependent regulation of the rat fatty acid synthase (FAS) gene. Gene. 1997 Jan 3;184(1):21–26. doi: 10.1016/s0378-1119(96)00568-9. [DOI] [PubMed] [Google Scholar]
- Rodriguez I. R., Chader G. J. A novel method for the isolation of tissue-specific genes. Nucleic Acids Res. 1992 Jul 11;20(13):3528–3528. doi: 10.1093/nar/20.13.3528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salero Enrique, Giménez Cecilio, Zafra Francisco. Identification of a non-canonical E-box motif as a regulatory element in the proximal promoter region of the apolipoprotein E gene. Biochem J. 2003 Mar 15;370(Pt 3):979–986. doi: 10.1042/BJ20021142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seegmiller Adam C., Dobrosotskaya Irina, Goldstein Joseph L., Ho Y. K., Brown Michael S., Rawson Robert B. The SREBP pathway in Drosophila: regulation by palmitate, not sterols. Dev Cell. 2002 Feb;2(2):229–238. doi: 10.1016/s1534-5807(01)00119-8. [DOI] [PubMed] [Google Scholar]
- Travers M. T., Barber M. C. Insulin-glucocorticoid interactions in the regulation of acetyl-CoA carboxylase-alpha transcript diversity in ovine adipose tissue. J Mol Endocrinol. 1999 Feb;22(1):71–79. doi: 10.1677/jme.0.0220071. [DOI] [PubMed] [Google Scholar]
- Travers M. T., Vallance A. J., Gourlay H. T., Gill C. A., Klein I., Bottema C. B., Barber M. C. Promoter I of the ovine acetyl-CoA carboxylase-alpha gene: an E-box motif at -114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes. Biochem J. 2001 Oct 15;359(Pt 2):273–284. doi: 10.1042/0264-6021:3590273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viollet B., Lefrançois-Martinez A. M., Henrion A., Kahn A., Raymondjean M., Martinez A. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms. J Biol Chem. 1996 Jan 19;271(3):1405–1415. doi: 10.1074/jbc.271.3.1405. [DOI] [PubMed] [Google Scholar]
- Wells Julie, Farnham Peggy J. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods. 2002 Jan;26(1):48–56. doi: 10.1016/S1046-2023(02)00007-5. [DOI] [PubMed] [Google Scholar]
- Whitelaw C. B., Harris S., McClenaghan M., Simons J. P., Clark A. J. Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice. Biochem J. 1992 Aug 15;286(Pt 1):31–39. doi: 10.1042/bj2860031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winz R., Hess D., Aebersold R., Brownsey R. W. Unique structural features and differential phosphorylation of the 280-kDa component (isozyme) of rat liver acetyl-CoA carboxylase. J Biol Chem. 1994 May 20;269(20):14438–14445. [PubMed] [Google Scholar]
- Yokoyama C., Wang X., Briggs M. R., Admon A., Wu J., Hua X., Goldstein J. L., Brown M. S. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8;75(1):187–197. [PubMed] [Google Scholar]
- Zhang S., Kim K. H. Acetyl-CoA carboxylase is essential for nutrient-induced insulin secretion. Biochem Biophys Res Commun. 1996 Dec 24;229(3):701–705. doi: 10.1006/bbrc.1996.1868. [DOI] [PubMed] [Google Scholar]