Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 15;375(Pt 2):433–440. doi: 10.1042/BJ20030427

Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells.

Penelope Buxton 1, Xiang-Ming Zhang 1, Bong Walsh 1, Absorn Sriratana 1, Irina Schenberg 1, Elizabeth Manickam 1, Tony Rowe 1
PMCID: PMC1223698  PMID: 12877659

Abstract

Members of the SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) superfamily [syntaxins, VAMPs (vesicle-associated membrane proteins) and SNAP25 (synaptosome-associated protein-25)-related proteins] are required for intracellular membrane-fusion events in eukaryotes. In neurons, assembly of SNARE core complexes comprising the presynaptic membrane-associated SNAREs syntaxin 1 and SNAP25, and the vesicle-associated SNARE VAMP2, is necessary for synaptic vesicle exocytosis. Several accessory factors have been described that associate with the synaptic SNAREs and modulate core complex assembly or mediate Ca2+ regulation. One such factor, Snapin, has been reported to be a brain-specific protein that interacts with SNAP25, and regulates association of the putative Ca2+-sensor synaptotagmin with the synaptic SNARE complex [Ilardi, Mochida and Sheng (1999) Nat. Neurosci. 2, 119-124]. Here we demonstrate that Snapin is expressed ubiquitously in neuronal and non-neuronal cells. Furthermore, using protein-protein-interaction assays we show that Snapin interacts with SNAP23, the widely expressed homologue of SNAP25, and that the predicted C-terminal helical domain of Snapin contains the SNAP23-binding site. Subcellular localization experiments revealed that Snapin is a soluble protein that exists in both cytosolic and peripheral membrane-bound pools in adipocytes. Moreover, association of Snapin with the plasma membrane was detected in cells overexpressing a Snapin-green fluorescent protein fusion protein. Finally, we show that Snapin is able to form a ternary complex with SNAP23 and syntaxin 4, suggesting that it is a component of non-neuronal SNARE complexes. An important implication of our results is that Snapin is likely to perform a general role in SNARE-mediated vesicle fusion events in non-neuronal cells in addition to its participation in Ca2+-regulated neurosecretion.

Full Text

The Full Text of this article is available as a PDF (206.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonin W., Holroyd C., Fasshauer D., Pabst S., Von Mollard G. F., Jahn R. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J. 2000 Dec 1;19(23):6453–6464. doi: 10.1093/emboj/19.23.6453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen D., Bernstein A. M., Lemons P. P., Whiteheart S. W. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood. 2000 Feb 1;95(3):921–929. [PubMed] [Google Scholar]
  3. Chen D., Lemons P. P., Schraw T., Whiteheart S. W. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 and 4 in lysosome release. Blood. 2000 Sep 1;96(5):1782–1788. [PubMed] [Google Scholar]
  4. Chen Y. A., Scheller R. H. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001 Feb;2(2):98–106. doi: 10.1038/35052017. [DOI] [PubMed] [Google Scholar]
  5. Chheda M. G., Ashery U., Thakur P., Rettig J., Sheng Z. H. Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol. 2001 Apr;3(4):331–338. doi: 10.1038/35070000. [DOI] [PubMed] [Google Scholar]
  6. Chin L. S., Nugent R. D., Raynor M. C., Vavalle J. P., Li L. SNIP, a novel SNAP-25-interacting protein implicated in regulated exocytosis. J Biol Chem. 2000 Jan 14;275(2):1191–1200. doi: 10.1074/jbc.275.2.1191. [DOI] [PubMed] [Google Scholar]
  7. Gerst J. E. Conserved alpha-helical segments on yeast homologs of the synaptobrevin/VAMP family of v-SNAREs mediate exocytic function. J Biol Chem. 1997 Jun 27;272(26):16591–16598. doi: 10.1074/jbc.272.26.16591. [DOI] [PubMed] [Google Scholar]
  8. Guo Z., Turner C., Castle D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell. 1998 Aug 21;94(4):537–548. doi: 10.1016/s0092-8674(00)81594-9. [DOI] [PubMed] [Google Scholar]
  9. Gyuris J., Golemis E., Chertkov H., Brent R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell. 1993 Nov 19;75(4):791–803. doi: 10.1016/0092-8674(93)90498-f. [DOI] [PubMed] [Google Scholar]
  10. Hayashi T., Yamasaki S., Nauenburg S., Binz T., Niemann H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 1995 May 15;14(10):2317–2325. doi: 10.1002/j.1460-2075.1995.tb07226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hilfiker S., Greengard P., Augustine G. J. Coupling calcium to SNARE-mediated synaptic vesicle fusion. Nat Neurosci. 1999 Feb;2(2):104–106. doi: 10.1038/5659. [DOI] [PubMed] [Google Scholar]
  12. Ilardi J. M., Mochida S., Sheng Z. H. Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci. 1999 Feb;2(2):119–124. doi: 10.1038/5673. [DOI] [PubMed] [Google Scholar]
  13. Jahn R. Sec1/Munc18 proteins: mediators of membrane fusion moving to center stage. Neuron. 2000 Aug;27(2):201–204. doi: 10.1016/s0896-6273(00)00029-5. [DOI] [PubMed] [Google Scholar]
  14. Jahn R., Südhof T. C. Membrane fusion and exocytosis. Annu Rev Biochem. 1999;68:863–911. doi: 10.1146/annurev.biochem.68.1.863. [DOI] [PubMed] [Google Scholar]
  15. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001 Jan 19;305(3):567–580. doi: 10.1006/jmbi.2000.4315. [DOI] [PubMed] [Google Scholar]
  16. Leung S. M., Chen D., DasGupta B. R., Whiteheart S. W., Apodaca G. SNAP-23 requirement for transferrin recycling in Streptolysin-O-permeabilized Madin-Darby canine kidney cells. J Biol Chem. 1998 Jul 10;273(28):17732–17741. doi: 10.1074/jbc.273.28.17732. [DOI] [PubMed] [Google Scholar]
  17. Martín-Martín B., Nabokina S. M., Blasi J., Lazo P. A., Mollinedo F. Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis. Blood. 2000 Oct 1;96(7):2574–2583. [PubMed] [Google Scholar]
  18. Ravichandran V., Chawla A., Roche P. A. Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem. 1996 Jun 7;271(23):13300–13303. doi: 10.1074/jbc.271.23.13300. [DOI] [PubMed] [Google Scholar]
  19. Rea S., Martin L. B., McIntosh S., Macaulay S. L., Ramsdale T., Baldini G., James D. E. Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface. J Biol Chem. 1998 Jul 24;273(30):18784–18792. doi: 10.1074/jbc.273.30.18784. [DOI] [PubMed] [Google Scholar]
  20. Sutton R. B., Fasshauer D., Jahn R., Brunger A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998 Sep 24;395(6700):347–353. doi: 10.1038/26412. [DOI] [PubMed] [Google Scholar]
  21. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
  22. Südhof Thomas C. Synaptotagmins: why so many? J Biol Chem. 2001 Dec 5;277(10):7629–7632. doi: 10.1074/jbc.R100052200. [DOI] [PubMed] [Google Scholar]
  23. Tanaka M., Gupta R., Mayer B. J. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Mol Cell Biol. 1995 Dec;15(12):6829–6837. doi: 10.1128/mcb.15.12.6829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Thurmond D. C., Ceresa B. P., Okada S., Elmendorf J. S., Coker K., Pessin J. E. Regulation of insulin-stimulated GLUT4 translocation by Munc18c in 3T3L1 adipocytes. J Biol Chem. 1998 Dec 11;273(50):33876–33883. doi: 10.1074/jbc.273.50.33876. [DOI] [PubMed] [Google Scholar]
  25. Tsujimoto S., Bean A. J. Distinct protein domains are responsible for the interaction of Hrs-2 with SNAP-25. The role of Hrs-2 in 7 S complex formation. J Biol Chem. 2000 Jan 28;275(4):2938–2942. doi: 10.1074/jbc.275.4.2938. [DOI] [PubMed] [Google Scholar]
  26. Weimbs T., Low S. H., Chapin S. J., Mostov K. E., Bucher P., Hofmann K. A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3046–3051. doi: 10.1073/pnas.94.7.3046. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES