Abstract
Members of the SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) superfamily [syntaxins, VAMPs (vesicle-associated membrane proteins) and SNAP25 (synaptosome-associated protein-25)-related proteins] are required for intracellular membrane-fusion events in eukaryotes. In neurons, assembly of SNARE core complexes comprising the presynaptic membrane-associated SNAREs syntaxin 1 and SNAP25, and the vesicle-associated SNARE VAMP2, is necessary for synaptic vesicle exocytosis. Several accessory factors have been described that associate with the synaptic SNAREs and modulate core complex assembly or mediate Ca2+ regulation. One such factor, Snapin, has been reported to be a brain-specific protein that interacts with SNAP25, and regulates association of the putative Ca2+-sensor synaptotagmin with the synaptic SNARE complex [Ilardi, Mochida and Sheng (1999) Nat. Neurosci. 2, 119-124]. Here we demonstrate that Snapin is expressed ubiquitously in neuronal and non-neuronal cells. Furthermore, using protein-protein-interaction assays we show that Snapin interacts with SNAP23, the widely expressed homologue of SNAP25, and that the predicted C-terminal helical domain of Snapin contains the SNAP23-binding site. Subcellular localization experiments revealed that Snapin is a soluble protein that exists in both cytosolic and peripheral membrane-bound pools in adipocytes. Moreover, association of Snapin with the plasma membrane was detected in cells overexpressing a Snapin-green fluorescent protein fusion protein. Finally, we show that Snapin is able to form a ternary complex with SNAP23 and syntaxin 4, suggesting that it is a component of non-neuronal SNARE complexes. An important implication of our results is that Snapin is likely to perform a general role in SNARE-mediated vesicle fusion events in non-neuronal cells in addition to its participation in Ca2+-regulated neurosecretion.
Full Text
The Full Text of this article is available as a PDF (206.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antonin W., Holroyd C., Fasshauer D., Pabst S., Von Mollard G. F., Jahn R. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. EMBO J. 2000 Dec 1;19(23):6453–6464. doi: 10.1093/emboj/19.23.6453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen D., Bernstein A. M., Lemons P. P., Whiteheart S. W. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood. 2000 Feb 1;95(3):921–929. [PubMed] [Google Scholar]
- Chen D., Lemons P. P., Schraw T., Whiteheart S. W. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 and 4 in lysosome release. Blood. 2000 Sep 1;96(5):1782–1788. [PubMed] [Google Scholar]
- Chen Y. A., Scheller R. H. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001 Feb;2(2):98–106. doi: 10.1038/35052017. [DOI] [PubMed] [Google Scholar]
- Chheda M. G., Ashery U., Thakur P., Rettig J., Sheng Z. H. Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nat Cell Biol. 2001 Apr;3(4):331–338. doi: 10.1038/35070000. [DOI] [PubMed] [Google Scholar]
- Chin L. S., Nugent R. D., Raynor M. C., Vavalle J. P., Li L. SNIP, a novel SNAP-25-interacting protein implicated in regulated exocytosis. J Biol Chem. 2000 Jan 14;275(2):1191–1200. doi: 10.1074/jbc.275.2.1191. [DOI] [PubMed] [Google Scholar]
- Gerst J. E. Conserved alpha-helical segments on yeast homologs of the synaptobrevin/VAMP family of v-SNAREs mediate exocytic function. J Biol Chem. 1997 Jun 27;272(26):16591–16598. doi: 10.1074/jbc.272.26.16591. [DOI] [PubMed] [Google Scholar]
- Guo Z., Turner C., Castle D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell. 1998 Aug 21;94(4):537–548. doi: 10.1016/s0092-8674(00)81594-9. [DOI] [PubMed] [Google Scholar]
- Gyuris J., Golemis E., Chertkov H., Brent R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell. 1993 Nov 19;75(4):791–803. doi: 10.1016/0092-8674(93)90498-f. [DOI] [PubMed] [Google Scholar]
- Hayashi T., Yamasaki S., Nauenburg S., Binz T., Niemann H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 1995 May 15;14(10):2317–2325. doi: 10.1002/j.1460-2075.1995.tb07226.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilfiker S., Greengard P., Augustine G. J. Coupling calcium to SNARE-mediated synaptic vesicle fusion. Nat Neurosci. 1999 Feb;2(2):104–106. doi: 10.1038/5659. [DOI] [PubMed] [Google Scholar]
- Ilardi J. M., Mochida S., Sheng Z. H. Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci. 1999 Feb;2(2):119–124. doi: 10.1038/5673. [DOI] [PubMed] [Google Scholar]
- Jahn R. Sec1/Munc18 proteins: mediators of membrane fusion moving to center stage. Neuron. 2000 Aug;27(2):201–204. doi: 10.1016/s0896-6273(00)00029-5. [DOI] [PubMed] [Google Scholar]
- Jahn R., Südhof T. C. Membrane fusion and exocytosis. Annu Rev Biochem. 1999;68:863–911. doi: 10.1146/annurev.biochem.68.1.863. [DOI] [PubMed] [Google Scholar]
- Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001 Jan 19;305(3):567–580. doi: 10.1006/jmbi.2000.4315. [DOI] [PubMed] [Google Scholar]
- Leung S. M., Chen D., DasGupta B. R., Whiteheart S. W., Apodaca G. SNAP-23 requirement for transferrin recycling in Streptolysin-O-permeabilized Madin-Darby canine kidney cells. J Biol Chem. 1998 Jul 10;273(28):17732–17741. doi: 10.1074/jbc.273.28.17732. [DOI] [PubMed] [Google Scholar]
- Martín-Martín B., Nabokina S. M., Blasi J., Lazo P. A., Mollinedo F. Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis. Blood. 2000 Oct 1;96(7):2574–2583. [PubMed] [Google Scholar]
- Ravichandran V., Chawla A., Roche P. A. Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem. 1996 Jun 7;271(23):13300–13303. doi: 10.1074/jbc.271.23.13300. [DOI] [PubMed] [Google Scholar]
- Rea S., Martin L. B., McIntosh S., Macaulay S. L., Ramsdale T., Baldini G., James D. E. Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface. J Biol Chem. 1998 Jul 24;273(30):18784–18792. doi: 10.1074/jbc.273.30.18784. [DOI] [PubMed] [Google Scholar]
- Sutton R. B., Fasshauer D., Jahn R., Brunger A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998 Sep 24;395(6700):347–353. doi: 10.1038/26412. [DOI] [PubMed] [Google Scholar]
- Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993 Mar 25;362(6418):318–324. doi: 10.1038/362318a0. [DOI] [PubMed] [Google Scholar]
- Südhof Thomas C. Synaptotagmins: why so many? J Biol Chem. 2001 Dec 5;277(10):7629–7632. doi: 10.1074/jbc.R100052200. [DOI] [PubMed] [Google Scholar]
- Tanaka M., Gupta R., Mayer B. J. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Mol Cell Biol. 1995 Dec;15(12):6829–6837. doi: 10.1128/mcb.15.12.6829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thurmond D. C., Ceresa B. P., Okada S., Elmendorf J. S., Coker K., Pessin J. E. Regulation of insulin-stimulated GLUT4 translocation by Munc18c in 3T3L1 adipocytes. J Biol Chem. 1998 Dec 11;273(50):33876–33883. doi: 10.1074/jbc.273.50.33876. [DOI] [PubMed] [Google Scholar]
- Tsujimoto S., Bean A. J. Distinct protein domains are responsible for the interaction of Hrs-2 with SNAP-25. The role of Hrs-2 in 7 S complex formation. J Biol Chem. 2000 Jan 28;275(4):2938–2942. doi: 10.1074/jbc.275.4.2938. [DOI] [PubMed] [Google Scholar]
- Weimbs T., Low S. H., Chapin S. J., Mostov K. E., Bucher P., Hofmann K. A conserved domain is present in different families of vesicular fusion proteins: a new superfamily. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3046–3051. doi: 10.1073/pnas.94.7.3046. [DOI] [PMC free article] [PubMed] [Google Scholar]