Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Oct 15;375(Pt 2):255–262. doi: 10.1042/BJ20031119

Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition.

David Komander 1, Gursant S Kular 1, Jennifer Bain 1, Matthew Elliott 1, Dario R Alessi 1, Daan M F Van Aalten 1
PMCID: PMC1223700  PMID: 12892559

Abstract

PDK1 (3-phosphoinositide-dependent protein kinase-1) is a member of the AGC (cAMP-dependent, cGMP-dependent, protein kinase C) family of protein kinases, and has a key role in insulin and growth-factor signalling through phosphorylation and subsequent activation of a number of other AGC kinase family members, such as protein kinase B. The staurosporine derivative UCN-01 (7-hydroxystaurosporine) has been reported to be a potent inhibitor for PDK1, and is currently undergoing clinical trials for the treatment of cancer. Here, we report the crystal structures of staurosporine and UCN-01 in complex with the kinase domain of PDK1. We show that, although staurosporine and UCN-01 interact with the PDK1 active site in an overall similar manner, the UCN-01 7-hydroxy group, which is not present in staurosporine, generates direct and water-mediated hydrogen bonds with active-site residues. Inhibition data from UCN-01 tested against a panel of 29 different kinases show a different pattern of inhibition compared with staurosporine. We discuss how these differences in inhibition could be attributed to specific interactions with the additional 7-hydroxy group, as well as the size of the 7-hydroxy-group-binding pocket. This information could lead to opportunities for structure-based optimization of PDK1 inhibitors.

Full Text

The Full Text of this article is available as a PDF (276.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Deak M., Casamayor A., Caudwell F. B., Morrice N., Norman D. G., Gaffney P., Reese C. B., MacDougall C. N., Harbison D. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol. 1997 Oct 1;7(10):776–789. doi: 10.1016/s0960-9822(06)00336-8. [DOI] [PubMed] [Google Scholar]
  2. Alessi D. R. Discovery of PDK1, one of the missing links in insulin signal transduction. Colworth Medal Lecture. Biochem Soc Trans. 2001 May;29(Pt 2):1–14. doi: 10.1042/0300-5127:0290001. [DOI] [PubMed] [Google Scholar]
  3. Bain Jenny, McLauchlan Hilary, Elliott Matthew, Cohen Philip. The specificities of protein kinase inhibitors: an update. Biochem J. 2003 Apr 1;371(Pt 1):199–204. doi: 10.1042/BJ20021535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Battistutta R., Sarno S., De Moliner E., Papinutto E., Zanotti G., Pinna L. A. The replacement of ATP by the competitive inhibitor emodin induces conformational modifications in the catalytic site of protein kinase CK2. J Biol Chem. 2000 Sep 22;275(38):29618–29622. doi: 10.1074/jbc.M004257200. [DOI] [PubMed] [Google Scholar]
  5. Bellon S., Fitzgibbon M. J., Fox T., Hsiao H. M., Wilson K. P. The structure of phosphorylated p38gamma is monomeric and reveals a conserved activation-loop conformation. Structure. 1999 Sep 15;7(9):1057–1065. doi: 10.1016/s0969-2126(99)80173-7. [DOI] [PubMed] [Google Scholar]
  6. Biondi R. M., Cheung P. C., Casamayor A., Deak M., Currie R. A., Alessi D. R. Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J. 2000 Mar 1;19(5):979–988. doi: 10.1093/emboj/19.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Biondi Ricardo M., Komander David, Thomas Christine C., Lizcano Jose M., Deak Maria, Alessi Dario R., van Aalten Daan M. F. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J. 2002 Aug 15;21(16):4219–4228. doi: 10.1093/emboj/cdf437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Biondi Ricardo M., Nebreda Angel R. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J. 2003 May 15;372(Pt 1):1–13. doi: 10.1042/BJ20021641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brazil D. P., Hemmings B. A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci. 2001 Nov;26(11):657–664. doi: 10.1016/s0968-0004(01)01958-2. [DOI] [PubMed] [Google Scholar]
  10. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
  11. Couldwell W. T., Hinton D. R., He S., Chen T. C., Sebat I., Weiss M. H., Law R. E. Protein kinase C inhibitors induce apoptosis in human malignant glioma cell lines. FEBS Lett. 1994 May 23;345(1):43–46. doi: 10.1016/0014-5793(94)00415-3. [DOI] [PubMed] [Google Scholar]
  12. Currie R. A., Walker K. S., Gray A., Deak M., Casamayor A., Downes C. P., Cohen P., Alessi D. R., Lucocq J. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J. 1999 Feb 1;337(Pt 3):575–583. [PMC free article] [PubMed] [Google Scholar]
  13. Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frödin M., Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol. 1999 May 25;151(1-2):65–77. doi: 10.1016/s0303-7207(99)00061-1. [DOI] [PubMed] [Google Scholar]
  15. Gescher A. Staurosporine analogues - pharmacological toys or useful antitumour agents? Crit Rev Oncol Hematol. 2000 May;34(2):127–135. doi: 10.1016/s1040-8428(00)00058-5. [DOI] [PubMed] [Google Scholar]
  16. Graves P. R., Yu L., Schwarz J. K., Gales J., Sausville E. A., O'Connor P. M., Piwnica-Worms H. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem. 2000 Feb 25;275(8):5600–5605. doi: 10.1074/jbc.275.8.5600. [DOI] [PubMed] [Google Scholar]
  17. Hooft R. W., Sander C., Vriend G. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins. 1996 Dec;26(4):363–376. doi: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  18. Johnson D. A., Akamine P., Radzio-Andzelm E., Madhusudan M., Taylor S. S. Dynamics of cAMP-dependent protein kinase. Chem Rev. 2001 Aug;101(8):2243–2270. doi: 10.1021/cr000226k. [DOI] [PubMed] [Google Scholar]
  19. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  20. Kleywegt G. J., Jones T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178–185. doi: 10.1107/S0907444993011333. [DOI] [PubMed] [Google Scholar]
  21. Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):407–414. doi: 10.1126/science.1862342. [DOI] [PubMed] [Google Scholar]
  22. Lamers M. B., Antson A. A., Hubbard R. E., Scott R. K., Williams D. H. Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine. J Mol Biol. 1999 Jan 15;285(2):713–725. doi: 10.1006/jmbi.1998.2369. [DOI] [PubMed] [Google Scholar]
  23. Lawrie A. M., Noble M. E., Tunnah P., Brown N. R., Johnson L. N., Endicott J. A. Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nat Struct Biol. 1997 Oct;4(10):796–801. doi: 10.1038/nsb1097-796. [DOI] [PubMed] [Google Scholar]
  24. Leslie Nick R., Downes C. Peter. PTEN: The down side of PI 3-kinase signalling. Cell Signal. 2002 Apr;14(4):285–295. doi: 10.1016/s0898-6568(01)00234-0. [DOI] [PubMed] [Google Scholar]
  25. Notredame C., Higgins D. G., Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000 Sep 8;302(1):205–217. doi: 10.1006/jmbi.2000.4042. [DOI] [PubMed] [Google Scholar]
  26. Owen D. J., Noble M. E., Garman E. F., Papageorgiou A. C., Johnson L. N. Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Structure. 1995 May 15;3(5):467–482. doi: 10.1016/s0969-2126(01)00180-0. [DOI] [PubMed] [Google Scholar]
  27. Prade L., Engh R. A., Girod A., Kinzel V., Huber R., Bossemeyer D. Staurosporine-induced conformational changes of cAMP-dependent protein kinase catalytic subunit explain inhibitory potential. Structure. 1997 Dec 15;5(12):1627–1637. doi: 10.1016/s0969-2126(97)00310-9. [DOI] [PubMed] [Google Scholar]
  28. Pullen N., Dennis P. B., Andjelkovic M., Dufner A., Kozma S. C., Hemmings B. A., Thomas G. Phosphorylation and activation of p70s6k by PDK1. Science. 1998 Jan 30;279(5351):707–710. doi: 10.1126/science.279.5351.707. [DOI] [PubMed] [Google Scholar]
  29. Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
  30. Sato Saori, Fujita Naoya, Tsuruo Takashi. Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene. 2002 Mar 7;21(11):1727–1738. doi: 10.1038/sj.onc.1205225. [DOI] [PubMed] [Google Scholar]
  31. Scheid M. P., Woodgett J. R. PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol. 2001 Oct;2(10):760–768. doi: 10.1038/35096067. [DOI] [PubMed] [Google Scholar]
  32. Senderowicz Adrian M. The cell cycle as a target for cancer therapy: basic and clinical findings with the small molecule inhibitors flavopiridol and UCN-01. Oncologist. 2002;7 (Suppl 3):12–19. doi: 10.1634/theoncologist.7-suppl_3-12. [DOI] [PubMed] [Google Scholar]
  33. Smith C. M., Shindyalov I. N., Veretnik S., Gribskov M., Taylor S. S., Ten Eyck L. F., Bourne P. E. The protein kinase resource. Trends Biochem Sci. 1997 Nov;22(11):444–446. doi: 10.1016/s0968-0004(97)01131-6. [DOI] [PubMed] [Google Scholar]
  34. Takahashi I., Kobayashi E., Asano K., Yoshida M., Nakano H. UCN-01, a selective inhibitor of protein kinase C from Streptomyces. J Antibiot (Tokyo) 1987 Dec;40(12):1782–1784. doi: 10.7164/antibiotics.40.1782. [DOI] [PubMed] [Google Scholar]
  35. Takahashi I., Saitoh Y., Yoshida M., Sano H., Nakano H., Morimoto M., Tamaoki T. UCN-01 and UCN-02, new selective inhibitors of protein kinase C. II. Purification, physico-chemical properties, structural determination and biological activities. J Antibiot (Tokyo) 1989 Apr;42(4):571–576. doi: 10.7164/antibiotics.42.571. [DOI] [PubMed] [Google Scholar]
  36. Tsai J., Taylor R., Chothia C., Gerstein M. The packing density in proteins: standard radii and volumes. J Mol Biol. 1999 Jul 2;290(1):253–266. doi: 10.1006/jmbi.1999.2829. [DOI] [PubMed] [Google Scholar]
  37. Vanhaesebroeck B., Alessi D. R. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000 Mar 15;346(Pt 3):561–576. [PMC free article] [PubMed] [Google Scholar]
  38. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph. 1990 Mar;8(1):52-6, 29. doi: 10.1016/0263-7855(90)80070-v. [DOI] [PubMed] [Google Scholar]
  39. Wang Z., Harkins P. C., Ulevitch R. J., Han J., Cobb M. H., Goldsmith E. J. The structure of mitogen-activated protein kinase p38 at 2.1-A resolution. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2327–2332. doi: 10.1073/pnas.94.6.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang Jing, Cron Peter, Good Valerie M., Thompson Vivienne, Hemmings Brian A., Barford David. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol. 2002 Dec;9(12):940–944. doi: 10.1038/nsb870. [DOI] [PubMed] [Google Scholar]
  41. Zhai L., Graves P. R., Robinson L. C., Italiano M., Culbertson M. R., Rowles J., Cobb M. H., DePaoli-Roach A. A., Roach P. J. Casein kinase I gamma subfamily. Molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the Saccharomyces cerevisiae YCK genes. J Biol Chem. 1995 May 26;270(21):12717–12724. doi: 10.1074/jbc.270.21.12717. [DOI] [PubMed] [Google Scholar]
  42. Zhang F., Strand A., Robbins D., Cobb M. H., Goldsmith E. J. Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature. 1994 Feb 24;367(6465):704–711. doi: 10.1038/367704a0. [DOI] [PubMed] [Google Scholar]
  43. Zhao Baoguang, Bower Michael J., McDevitt Patrick J., Zhao Huizhen, Davis Stephen T., Johanson Kyung O., Green Susan M., Concha Nestor O., Zhou Bin-Bing S. Structural basis for Chk1 inhibition by UCN-01. J Biol Chem. 2002 Sep 19;277(48):46609–46615. doi: 10.1074/jbc.M201233200. [DOI] [PubMed] [Google Scholar]
  44. Zhu X., Kim J. L., Newcomb J. R., Rose P. E., Stover D. R., Toledo L. M., Zhao H., Morgenstern K. A. Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure. 1999 Jun 15;7(6):651–661. doi: 10.1016/s0969-2126(99)80086-0. [DOI] [PubMed] [Google Scholar]
  45. ter Haar E., Coll J. T., Austen D. A., Hsiao H. M., Swenson L., Jain J. Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol. 2001 Jul;8(7):593–596. doi: 10.1038/89624. [DOI] [PubMed] [Google Scholar]
  46. van Aalten D. M., Bywater R., Findlay J. B., Hendlich M., Hooft R. W., Vriend G. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des. 1996 Jun;10(3):255–262. doi: 10.1007/BF00355047. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES