Abstract
AGT (O6-alkylguanine DNA alkyltransferase) is an important DNA-repair protein that protects cells from killing and mutagenesis by alkylating agents. The AGT genes from two extremely thermophilic organisms, the bacterium Aquifex aeolicus and the archaeon Archaeoglobus fulgidus were PCR-derived and cloned into an expression vector. The nucleotide sequence of the Aq. aeolicus AGT encodes a 201-amino-acid protein with a molecular mass of 23000 Da and Ar. fulgidus AGT codes for a 147-amino-acid protein with a molecular mass of 16718 Da. The Aq. aeolicus and Ar. fulgidus AGTs were expressed at high levels in Escherichia coli fused to an N-terminal polyhistidine tag that allowed single-step isolation and purification by metal-affinity chromatography. Both AGTs formed inclusion bodies and were not soluble under native purification conditions. Therefore AGT isolation was performed under protein-denaturation conditions in the presence of 8.0 M urea. Soluble AGT was obtained by refolding the AGT in the presence of calf thymus DNA. Both AGTs were active in repairing O6-methylguanine and, at a lower rate, O4-methylthymine in DNA. They exhibited thermostability and optimum activity at high temperature. The thermostable AGTs, particularly that from Aq. aeolicus, were readily inactivated by the low-molecular-mass inhibitor O6-benzylguanine, which is currently in clinical trials to enhance cancer chemotherapy.
Full Text
The Full Text of this article is available as a PDF (150.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Begley T. J., Haas B. J., Noel J., Shekhtman A., Williams W. A., Cunningham R. P. A new member of the endonuclease III family of DNA repair enzymes that removes methylated purines from DNA. Curr Biol. 1999 Jun 17;9(12):653–656. doi: 10.1016/s0960-9822(99)80288-7. [DOI] [PubMed] [Google Scholar]
- Birkeland Nils-Kåre, Anensen Hilde, Knaevelsrud Ingeborg, Kristoffersen Wenche, Bjørås Magnar, Robb Frank T., Klungland Arne, Bjelland Svein. Methylpurine DNA glycosylase of the hyperthermophilic archaeon Archaeoglobus fulgidus. Biochemistry. 2002 Oct 22;41(42):12697–12705. doi: 10.1021/bi020334w. [DOI] [PubMed] [Google Scholar]
- Crone T. M., Kanugula S., Pegg A. E. Mutations in the Ada O6-alkylguanine-DNA alkyltransferase conferring sensitivity to inactivation by O6-benzylguanine and 2,4-diamino-6-benzyloxy-5-nitrosopyrimidine. Carcinogenesis. 1995 Aug;16(8):1687–1692. doi: 10.1093/carcin/16.8.1687. [DOI] [PubMed] [Google Scholar]
- Daniels D. S., Mol C. D., Arvai A. S., Kanugula S., Pegg A. E., Tainer J. A. Active and alkylated human AGT structures: a novel zinc site, inhibitor and extrahelical base binding. EMBO J. 2000 Apr 3;19(7):1719–1730. doi: 10.1093/emboj/19.7.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels D. S., Tainer J. A. Conserved structural motifs governing the stoichiometric repair of alkylated DNA by O(6)-alkylguanine-DNA alkyltransferase. Mutat Res. 2000 Aug 30;460(3-4):151–163. doi: 10.1016/s0921-8777(00)00024-0. [DOI] [PubMed] [Google Scholar]
- Deckert G., Warren P. V., Gaasterland T., Young W. G., Lenox A. L., Graham D. E., Overbeek R., Snead M. A., Keller M., Aujay M. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature. 1998 Mar 26;392(6674):353–358. doi: 10.1038/32831. [DOI] [PubMed] [Google Scholar]
- DiRuggiero J., Brown J. R., Bogert A. P., Robb F. T. DNA repair systems in archaea: mementos from the last universal common ancestor? J Mol Evol. 1999 Oct;49(4):474–484. doi: 10.1007/pl00006570. [DOI] [PubMed] [Google Scholar]
- Dolan M. E., Moschel R. C., Pegg A. E. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5368–5372. doi: 10.1073/pnas.87.14.5368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edara S., Kanugula S., Goodtzova K., Pegg A. E. Resistance of the human O6-alkylguanine-DNA alkyltransferase containing arginine at codon 160 to inactivation by O6-benzylguanine. Cancer Res. 1996 Dec 15;56(24):5571–5575. [PubMed] [Google Scholar]
- Elder R. H., Margison G. P., Rafferty J. A. Differential inactivation of mammalian and Escherichia coli O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine. Biochem J. 1994 Feb 15;298(Pt 1):231–235. doi: 10.1042/bj2980231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Encell L. P., Loeb L. A. Redesigning the substrate specificity of human O(6)-alkylguanine-DNA alkyltransferase. Mutants with enhanced repair of O(4)-methylthymine. Biochemistry. 1999 Sep 14;38(37):12097–12103. doi: 10.1021/bi9913606. [DOI] [PubMed] [Google Scholar]
- Friedman H. S. Can O6-alkylguanine-DNA alkyltransferase depletion enhance alkylator activity in the clinic? Clin Cancer Res. 2000 Aug;6(8):2967–2968. [PubMed] [Google Scholar]
- Goodtzova K., Crone T. M., Pegg A. E. Activation of human O6-alkylguanine-DNA alkyltransferase by DNA. Biochemistry. 1994 Jul 19;33(28):8385–8390. doi: 10.1021/bi00194a001. [DOI] [PubMed] [Google Scholar]
- Goodtzova K., Kanugula S., Edara S., Pauly G. T., Moschel R. C., Pegg A. E. Repair of O6-benzylguanine by the Escherichia coli Ada and Ogt and the human O6-alkylguanine-DNA alkyltransferases. J Biol Chem. 1997 Mar 28;272(13):8332–8339. doi: 10.1074/jbc.272.13.8332. [DOI] [PubMed] [Google Scholar]
- Graves R. J., Li B. F., Swann P. F. Repair of O6-methylguanine, O6-ethylguanine, O6-isopropylguanine and O4-methylthymine in synthetic oligodeoxynucleotides by Escherichia coli ada gene O6-alkylguanine-DNA-alkyltransferase. Carcinogenesis. 1989 Apr;10(4):661–666. doi: 10.1093/carcin/10.4.661. [DOI] [PubMed] [Google Scholar]
- Hashimoto H., Inoue T., Nishioka M., Fujiwara S., Takagi M., Imanaka T., Kai Y. Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferase. J Mol Biol. 1999 Sep 24;292(3):707–716. doi: 10.1006/jmbi.1999.3100. [DOI] [PubMed] [Google Scholar]
- Kanugula S., Goodtzova K., Edara S., Pegg A. E. Alteration of arginine-128 to alanine abolishes the ability of human O6-alkylguanine-DNA alkyltransferase to repair methylated DNA but has no effect on its reaction with O6-benzylguanine. Biochemistry. 1995 May 30;34(21):7113–7119. doi: 10.1021/bi00021a024. [DOI] [PubMed] [Google Scholar]
- Kanugula S., Pegg A. E. Novel DNA repair alkyltransferase from Caenorhabditis elegans. Environ Mol Mutagen. 2001;38(2-3):235–243. doi: 10.1002/em.1077. [DOI] [PubMed] [Google Scholar]
- Klenk H. P., Clayton R. A., Tomb J. F., White O., Nelson K. E., Ketchum K. A., Dodson R. J., Gwinn M., Hickey E. K., Peterson J. D. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov 27;390(6658):364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
- Leclere M. M., Nishioka M., Yuasa T., Fujiwara S., Takagi M., Imanaka T. The O6-methylguanine-DNA methyltransferase from the hyperthermophilic archaeon Pyrococcus sp. KOD1: a thermostable repair enzyme. Mol Gen Genet. 1998 Apr;258(1-2):69–77. doi: 10.1007/s004380050708. [DOI] [PubMed] [Google Scholar]
- Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
- Makarova Kira S., Aravind L., Grishin Nick V., Rogozin Igor B., Koonin Eugene V. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002 Jan 15;30(2):482–496. doi: 10.1093/nar/30.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margison Geoffrey P., Povey Andrew C., Kaina Bernd, Santibáez Koref Mauro F. Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis. 2003 Apr;24(4):625–635. doi: 10.1093/carcin/bgg005. [DOI] [PubMed] [Google Scholar]
- Margison Geoffrey P., Santibáez Koref Mauro F., Povey Andrew C. Mechanisms of carcinogenicity/chemotherapy by O6-methylguanine. Mutagenesis. 2002 Nov;17(6):483–487. doi: 10.1093/mutage/17.6.483. [DOI] [PubMed] [Google Scholar]
- Margison Geoffrey P., Santibáez-Koref Mauro F. O6-alkylguanine-DNA alkyltransferase: role in carcinogenesis and chemotherapy. Bioessays. 2002 Mar;24(3):255–266. doi: 10.1002/bies.10063. [DOI] [PubMed] [Google Scholar]
- Moore M. H., Gulbis J. M., Dodson E. J., Demple B., Moody P. C. Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli. EMBO J. 1994 Apr 1;13(7):1495–1501. doi: 10.1002/j.1460-2075.1994.tb06410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paalman S. R., Sung C., Clarke N. D. Specificity of DNA repair methyltransferases determined by competitive inactivation with oligonucleotide substrates: evidence that Escherichia coli Ada repairs O6-methylguanine and O4-methylthymine with similar efficiency. Biochemistry. 1997 Sep 16;36(37):11118–11124. doi: 10.1021/bi970740t. [DOI] [PubMed] [Google Scholar]
- Pauly G. T., Moschel R. C. Mutagenesis by O(6)-methyl-, O(6)-ethyl-, and O(6)-benzylguanine and O(4)-methylthymine in human cells: effects of O(6)-alkylguanine-DNA alkyltransferase and mismatch repair. Chem Res Toxicol. 2001 Jul;14(7):894–900. doi: 10.1021/tx010032f. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Boosalis M., Samson L., Moschel R. C., Byers T. L., Swenn K., Dolan M. E. Mechanism of inactivation of human O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. Biochemistry. 1993 Nov 16;32(45):11998–12006. doi: 10.1021/bi00096a009. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Dolan M. E., Moschel R. C. Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. Prog Nucleic Acid Res Mol Biol. 1995;51:167–223. doi: 10.1016/s0079-6603(08)60879-x. [DOI] [PubMed] [Google Scholar]
- Pieper R. O. Understanding and manipulating O6-methylguanine-DNA methyltransferase expression. Pharmacol Ther. 1997;74(3):285–297. doi: 10.1016/s0163-7258(97)00003-x. [DOI] [PubMed] [Google Scholar]
- Quinn Jennifer A., Pluda James, Dolan M. Eileen, Delaney Shannon, Kaplan Richard, Rich Jeremy N., Friedman Allan H., Reardon David A., Sampson John H., Colvin O. Michael. Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol. 2002 May 1;20(9):2277–2283. doi: 10.1200/JCO.2002.09.084. [DOI] [PubMed] [Google Scholar]
- Samson L., Han S., Marquis J. C., Rasmussen L. J. Mammalian DNA repair methyltransferases shield O4MeT from nucleotide excision repair. Carcinogenesis. 1997 May;18(5):919–924. doi: 10.1093/carcin/18.5.919. [DOI] [PubMed] [Google Scholar]
- Sassanfar M., Dosanjh M. K., Essigmann J. M., Samson L. Relative efficiencies of the bacterial, yeast, and human DNA methyltransferases for the repair of O6-methylguanine and O4-methylthymine. Suggestive evidence for O4-methylthymine repair by eukaryotic methyltransferases. J Biol Chem. 1991 Feb 15;266(5):2767–2771. [PubMed] [Google Scholar]
- Shiraki K., Nishikori S., Fujiwara S., Hashimoto H., Kai Y., Takagi M., Imanaka T. Comparative analyses of the conformational stability of a hyperthermophilic protein and its mesophilic counterpart. Eur J Biochem. 2001 Aug;268(15):4144–4150. doi: 10.1046/j.1432-1327.2001.02324.x. [DOI] [PubMed] [Google Scholar]
- Singer B., Essigmann J. M. Site-specific mutagenesis: retrospective and prospective. Carcinogenesis. 1991 Jun;12(6):949–955. doi: 10.1093/carcin/12.6.949. [DOI] [PubMed] [Google Scholar]
- Skorvaga M., Raven N. D., Margison G. P. Thermostable archaeal O6-alkylguanine-DNA alkyltransferases. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6711–6715. doi: 10.1073/pnas.95.12.6711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spratt T. E., Wu J. D., Levy D. E., Kanugula S., Pegg A. E. Reaction and binding of oligodeoxynucleotides containing analogues of O6-methylguanine with wild-type and mutant human O6-alkylguanine-DNA alkyltransferase. Biochemistry. 1999 May 25;38(21):6801–6806. doi: 10.1021/bi982908w. [DOI] [PubMed] [Google Scholar]
- Taverna P., Sedgwick B. Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli. J Bacteriol. 1996 Sep;178(17):5105–5111. doi: 10.1128/jb.178.17.5105-5111.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White M. F. Archaeal DNA repair: paradigms and puzzles. Biochem Soc Trans. 2003 Jun;31(Pt 3):690–693. doi: 10.1042/bst0310690.. [DOI] [PubMed] [Google Scholar]
- Wibley J. E., Pegg A. E., Moody P. C. Crystal structure of the human O(6)-alkylguanine-DNA alkyltransferase. Nucleic Acids Res. 2000 Jan 15;28(2):393–401. doi: 10.1093/nar/28.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu-Welliver M., Kanugula S., Pegg A. E. Isolation of human O6-alkylguanine-DNA alkyltransferase mutants highly resistant to inactivation by O6-benzylguanine. Cancer Res. 1998 May 1;58(9):1936–1945. [PubMed] [Google Scholar]
- Zak P., Kleibl K., Laval F. Repair of O6-methylguanine and O4-methylthymine by the human and rat O6-methylguanine-DNA methyltransferases. J Biol Chem. 1994 Jan 7;269(1):730–733. [PubMed] [Google Scholar]
