Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Nov 1;375(Pt 3):567–579. doi: 10.1042/BJ20030693

Ceramide induces a loss in cytosolic peroxide levels in mononuclear cells.

Darren C Phillips 1, Helen R Griffiths 1
PMCID: PMC1223707  PMID: 12877656

Abstract

Ceramide (a sphingolipid) and reactive oxygen species are each partly responsible for intracellular signal transduction in response to a variety of agents. It has been reported that ceramide and reactive oxygen species are intimately linked and show reciprocal regulation [Liu, Andreieu-Abadie, Levade, Zhang, Obeid and Hannun (1998) J. Biol. Chem. 273, 11313-11320]. Utilizing synthetic, short-chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide formation or using stimulation of CD95 to induce ceramide formation, we found that the principal redox-altering property of ceramide is to lower the [peroxide](cyt) (cytosolic peroxide concentration). Apoptosis of Jurkat T-cells, primary resting and phytohaemagglutinin-activated human peripheral blood T-lymphocytes was preceded by a loss in [peroxide](cyt), as measured by the peroxide-sensitive probe 2',7'-dichlorofluorescein diacetate (also reflected in a lower rate of superoxide dismutase-inhibitable cytochrome c reduction), and this was not associated with a loss of membrane integrity. Where growth arrest of U937 monocytes was observed without a loss of membrane integrity, the decrease in [peroxide](cyt) was of a lower magnitude when compared with that preceding the onset of apoptosis in T-cells. Furthermore, decreasing the cytosolic peroxide level in U937 monocytes before the application of synthetic ceramide by pretreatment with either of the antioxidants N -acetyl cysteine or glutathione conferred apoptosis. However, N -acetyl cysteine or glutathione did not affect the kinetics or magnitude of ceramide-induced apoptosis of Jurkat T-cells. Therefore the primary redox effect of cellular ceramide accumulation is to lower the [peroxide](cyt) of both primary and immortalized cells, the magnitude of which dictates the cellular response.

Full Text

The Full Text of this article is available as a PDF (316.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrieu N., Salvayre R., Levade T. Evidence against involvement of the acid lysosomal sphingomyelinase in the tumor-necrosis-factor- and interleukin-1-induced sphingomyelin cycle and cell proliferation in human fibroblasts. Biochem J. 1994 Oct 15;303(Pt 2):341–345. doi: 10.1042/bj3030341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronis A., Melendez J. Andr's, Golan O., Shilo S., Dicter N., Tirosh O. Potentiation of Fas-mediated apoptosis by attenuated production of mitochondria-derived reactive oxygen species. Cell Death Differ. 2003 Mar;10(3):335–344. doi: 10.1038/sj.cdd.4401150. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Bielawska A., Perry D. K., Hannun Y. A. Determination of ceramides and diglycerides by the diglyceride kinase assay. Anal Biochem. 2001 Nov 15;298(2):141–150. doi: 10.1006/abio.2001.5342. [DOI] [PubMed] [Google Scholar]
  5. Boland M. P., Foster S. J., O'Neill L. A. Daunorubicin activates NFkappaB and induces kappaB-dependent gene expression in HL-60 promyelocytic and Jurkat T lymphoma cells. J Biol Chem. 1997 May 16;272(20):12952–12960. doi: 10.1074/jbc.272.20.12952. [DOI] [PubMed] [Google Scholar]
  6. Bose R., Verheij M., Haimovitz-Friedman A., Scotto K., Fuks Z., Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995 Aug 11;82(3):405–414. doi: 10.1016/0092-8674(95)90429-8. [DOI] [PubMed] [Google Scholar]
  7. Burkitt M. J., Wardman P. Cytochrome C is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis. Biochem Biophys Res Commun. 2001 Mar 23;282(1):329–333. doi: 10.1006/bbrc.2001.4578. [DOI] [PubMed] [Google Scholar]
  8. Dbaibo G. S., Pushkareva M. Y., Jayadev S., Schwarz J. K., Horowitz J. M., Obeid L. M., Hannun Y. A. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1347–1351. doi: 10.1073/pnas.92.5.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fang W., Rivard J. J., Ganser J. A., LeBien T. W., Nath K. A., Mueller D. L., Behrens T. W. Bcl-xL rescues WEHI 231 B lymphocytes from oxidant-mediated death following diverse apoptotic stimuli. J Immunol. 1995 Jul 1;155(1):66–75. [PubMed] [Google Scholar]
  10. Gamard C. J., Dbaibo G. S., Liu B., Obeid L. M., Hannun Y. A. Selective involvement of ceramide in cytokine-induced apoptosis. Ceramide inhibits phorbol ester activation of nuclear factor kappaB. J Biol Chem. 1997 Jun 27;272(26):16474–16481. doi: 10.1074/jbc.272.26.16474. [DOI] [PubMed] [Google Scholar]
  11. García-Ruiz C., Colell A., Marí M., Morales A., Fernández-Checa J. C. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997 Apr 25;272(17):11369–11377. doi: 10.1074/jbc.272.17.11369. [DOI] [PubMed] [Google Scholar]
  12. Ghibelli L., Fanelli C., Rotilio G., Lafavia E., Coppola S., Colussi C., Civitareale P., Ciriolo M. R. Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J. 1998 Apr;12(6):479–486. doi: 10.1096/fasebj.12.6.479. [DOI] [PubMed] [Google Scholar]
  13. Gulbins E., Bissonnette R., Mahboubi A., Martin S., Nishioka W., Brunner T., Baier G., Baier-Bitterlich G., Byrd C., Lang F. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity. 1995 Apr;2(4):341–351. doi: 10.1016/1074-7613(95)90142-6. [DOI] [PubMed] [Google Scholar]
  14. Hampton Mark B., Stamenkovic Ivan, Winterbourn Christine C. Interaction with substrate sensitises caspase-3 to inactivation by hydrogen peroxide. FEBS Lett. 2002 Apr 24;517(1-3):229–232. doi: 10.1016/s0014-5793(02)02629-7. [DOI] [PubMed] [Google Scholar]
  15. Hanna A. N., Chan E. Y., Xu J., Stone J. C., Brindley D. N. A novel pathway for tumor necrosis factor-alpha and ceramide signaling involving sequential activation of tyrosine kinase, p21(ras), and phosphatidylinositol 3-kinase. J Biol Chem. 1999 Apr 30;274(18):12722–12729. doi: 10.1074/jbc.274.18.12722. [DOI] [PubMed] [Google Scholar]
  16. Hannun Y. A., Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000 Feb;10(2):73–80. doi: 10.1016/s0962-8924(99)01694-3. [DOI] [PubMed] [Google Scholar]
  17. Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
  18. Jayanthi S., Ordonez S., McCoy M. T., Cadet J. L. Dual mechanism of Fas-induced cell death in neuroglioma cells: a role for reactive oxygen species. Brain Res Mol Brain Res. 1999 Oct 1;72(2):158–165. doi: 10.1016/s0169-328x(99)00216-8. [DOI] [PubMed] [Google Scholar]
  19. Laouar A., Glesne D., Huberman E. Involvement of protein kinase C-beta and ceramide in tumor necrosis factor-alpha-induced but not Fas-induced apoptosis of human myeloid leukemia cells. J Biol Chem. 1999 Aug 13;274(33):23526–23534. doi: 10.1074/jbc.274.33.23526. [DOI] [PubMed] [Google Scholar]
  20. Lee B. R., Um H. D. Hydrogen peroxide suppresses U937 cell death by two different mechanisms depending on its concentration. Exp Cell Res. 1999 May 1;248(2):430–438. doi: 10.1006/excr.1999.4409. [DOI] [PubMed] [Google Scholar]
  21. Lee Woan Rouh, Shen Shing Chuan, Lin Hui Yi, Hou Wen Chi, Yang Ling Ling, Chen Yen Chou. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca(2+)-dependent endonuclease. Biochem Pharmacol. 2002 Jan 15;63(2):225–236. doi: 10.1016/s0006-2952(01)00876-0. [DOI] [PubMed] [Google Scholar]
  22. Liu B., Andrieu-Abadie N., Levade T., Zhang P., Obeid L. M., Hannun Y. A. Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem. 1998 May 1;273(18):11313–11320. doi: 10.1074/jbc.273.18.11313. [DOI] [PubMed] [Google Scholar]
  23. Liu B., Hannun Y. A. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem. 1997 Jun 27;272(26):16281–16287. doi: 10.1074/jbc.272.26.16281. [DOI] [PubMed] [Google Scholar]
  24. MacKichan M. L., DeFranco A. L. Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog. J Biol Chem. 1999 Jan 15;274(3):1767–1775. doi: 10.1074/jbc.274.3.1767. [DOI] [PubMed] [Google Scholar]
  25. Mansat-de Mas V., Bezombes C., Quillet-Mary A., Bettaïeb A., D'orgeix A. D., Laurent G., Jaffrézou J. P. Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol. 1999 Nov;56(5):867–874. doi: 10.1124/mol.56.5.867. [DOI] [PubMed] [Google Scholar]
  26. Mengubas K., Fahey A. A., Lewin J., Mehta A. B., Hoffbrand A. V., Wickremasinghe R. G. Killing of T lymphocytes by synthetic ceramide is by a nonapoptotic mechanism and is abrogated following mitogenic activation. Exp Cell Res. 1999 May 25;249(1):116–122. doi: 10.1006/excr.1999.4474. [DOI] [PubMed] [Google Scholar]
  27. Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
  28. Obeid L. M., Linardic C. M., Karolak L. A., Hannun Y. A. Programmed cell death induced by ceramide. Science. 1993 Mar 19;259(5102):1769–1771. doi: 10.1126/science.8456305. [DOI] [PubMed] [Google Scholar]
  29. Pani G., Bedogni B., Colavitti R., Anzevino R., Borrello S., Galeotti T. Cell compartmentalization in redox signaling. IUBMB Life. 2001 Jul;52(1-2):7–16. doi: 10.1080/15216540252774702. [DOI] [PubMed] [Google Scholar]
  30. Phillips Darren Charles, Allen Kirsty, Griffiths Helen R. Synthetic ceramides induce growth arrest or apoptosis by altering cellular redox status. Arch Biochem Biophys. 2002 Nov 1;407(1):15–24. doi: 10.1016/s0003-9861(02)00496-4. [DOI] [PubMed] [Google Scholar]
  31. Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
  32. Quillet-Mary A., Jaffrézou J. P., Mansat V., Bordier C., Naval J., Laurent G. Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997 Aug 22;272(34):21388–21395. doi: 10.1074/jbc.272.34.21388. [DOI] [PubMed] [Google Scholar]
  33. Ragg S. J., Kaga S., Berg K. A., Ochi A. The mitogen-activated protein kinase pathway inhibits ceramide-induced terminal differentiation of a human monoblastic leukemia cell line, U937. J Immunol. 1998 Aug 1;161(3):1390–1398. [PubMed] [Google Scholar]
  34. Rota C., Chignell C. F., Mason R. P. Evidence for free radical formation during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med. 1999 Oct;27(7-8):873–881. doi: 10.1016/s0891-5849(99)00137-9. [DOI] [PubMed] [Google Scholar]
  35. Santana P., Peña L. A., Haimovitz-Friedman A., Martin S., Green D., McLoughlin M., Cordon-Cardo C., Schuchman E. H., Fuks Z., Kolesnick R. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell. 1996 Jul 26;86(2):189–199. doi: 10.1016/s0092-8674(00)80091-4. [DOI] [PubMed] [Google Scholar]
  36. Sawada Motoshi, Nakashima Shigeru, Kiyono Tohru, Yamada Jun, Hara Shigeru, Nakagawa Masanori, Shinoda Jun, Sakai Noboru. Acid sphingomyelinase activation requires caspase-8 but not p53 nor reactive oxygen species during Fas-induced apoptosis in human glioma cells. Exp Cell Res. 2002 Feb 15;273(2):157–168. doi: 10.1006/excr.2001.5437. [DOI] [PubMed] [Google Scholar]
  37. Schulze-Osthoff K., Bakker A. C., Vanhaesebroeck B., Beyaert R., Jacob W. A., Fiers W. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem. 1992 Mar 15;267(8):5317–5323. [PubMed] [Google Scholar]
  38. Schulze-Osthoff K., Krammer P. H., Dröge W. Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 1994 Oct 3;13(19):4587–4596. doi: 10.1002/j.1460-2075.1994.tb06780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  40. Suzuki Y., Ono Y., Hirabayashi Y. Rapid and specific reactive oxygen species generation via NADPH oxidase activation during Fas-mediated apoptosis. FEBS Lett. 1998 Mar 27;425(2):209–212. doi: 10.1016/s0014-5793(98)00228-2. [DOI] [PubMed] [Google Scholar]
  41. Suzuki Y., Ono Y. Involvement of reactive oxygen species produced via NADPH oxidase in tyrosine phosphorylation in human B- and T-lineage lymphoid cells. Biochem Biophys Res Commun. 1999 Feb 16;255(2):262–267. doi: 10.1006/bbrc.1999.0188. [DOI] [PubMed] [Google Scholar]
  42. Tepper A. D., Cock J. G., de Vries E., Borst J., van Blitterswijk W. J. CD95/Fas-induced ceramide formation proceeds with slow kinetics and is not blocked by caspase-3/CPP32 inhibition. J Biol Chem. 1997 Sep 26;272(39):24308–24312. doi: 10.1074/jbc.272.39.24308. [DOI] [PubMed] [Google Scholar]
  43. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  44. Um H. D., Orenstein J. M., Wahl S. M. Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway. J Immunol. 1996 May 1;156(9):3469–3477. [PubMed] [Google Scholar]
  45. Venable M. E., Lee J. Y., Smyth M. J., Bielawska A., Obeid L. M. Role of ceramide in cellular senescence. J Biol Chem. 1995 Dec 22;270(51):30701–30708. doi: 10.1074/jbc.270.51.30701. [DOI] [PubMed] [Google Scholar]
  46. Verheij M., Bose R., Lin X. H., Yao B., Jarvis W. D., Grant S., Birrer M. J., Szabo E., Zon L. I., Kyriakis J. M. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996 Mar 7;380(6569):75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES